Analytical investigation of specific adsorption kinetics of CO₂ gas on dendrimer loaded in organoclays

Kinjal J. Shah a, Toyoko Imae a,b,*

a Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan, ROC
b Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan, ROC

HIGHLIGHTS
- Time-course CO₂ gas adsorption on dendrimer-loaded organoclays is analyzed.
- CO₂ adsorption follows the Langmuir monolayer adsorption kinetics.
- The adsorption sites are on clay surfaces, clay interlayers and dendrimers.
- Amine-terminated dendrimer on clays displays the preferable CO₂ adsorption.

GRAPHICAL ABSTRACT
Specific adsorption of CO₂ gas on dendrimer loaded in organoclays.

ARTICLE INFO
Article history:
Received 24 July 2015
Received in revised form 25 August 2015
Accepted 26 August 2015
Available online 1 September 2015

Keywords:
Langmuir adsorption kinetics
CO₂ gas adsorption
Organoclay
Dendrimer
Specific adsorption
Binding site

ABSTRACT
The time-course CO₂ gas adsorption on pristine clays and dendrimer-loaded organoclays was analyzed by the computer simulation. Observed data of CO₂ adsorption followed the Langmuir monolayer adsorption kinetics, when two and three adsorption sites were taken account for pristine clays and organoclays, respectively. The sites are on clay surfaces, clay interlayers and dendrimers. Amine-terminated dendrimer-loaded cation-exchange clays (laponite and sericite) displayed preferable adsorption of CO₂ on dendrimer as well as on clay surface and interlayers. However, carboxylate-terminated dendrimer-loaded anion-exchange clay (hydrrotalcite) reduced the CO₂ adsorption in comparison with pristine clay because of less affinity of CO₂ with carboxylate-terminals. This quantitative study suggests the new insights for the selective adsorption of CO₂ molecules on solid adsorbents of amine-terminated organoclays.

1. Introduction
Nowadays, the release of pollutant gases like greenhouse gases from emission sources such as energy industries and transportation sectors is increasing in the world [1,2]. Therefore, the separation and storage equipment of gases are demanded to decrease the growing amount of such pollutant gases [3]. Adsorption is one of the most widely applied techniques for pollutant removal from contaminated atmosphere [4]. When the adsorption is concerned, the thermodynamic and kinetic aspects should be involved to notice more details about the performance of gases on adsorbents [5]. Many porous materials such as aluminosilicates [6], mesoporous silica [7], zeolites [8], metal oxides [9], carbons [10] and clays [11] were explored as adsorbents. Especially, the...
clay mineral group has large varieties of specific surfaces for adsorption, depending on sizes, shapes and components. Moreover, clays treated with functional molecules can possess the multiple selectivity of gas adsorption different from the pristine clays [12].

The analysis of adsorption kinetics allows the determination of rate constants and adsorption amounts on the completion of adsorption process. Over the years, a wide variety of adsorption kinetics models such as a Lagergren pseudo-first-order rate model, a pseudo-second-order rate model, an Elovich's model, a second-order rate model, an intraparticle diffusion model, a Bangham's pore diffusion model, a Langmuir adsorption kinetics model etc. have been proposed [5,13–16]. The adsorption capacity and selectivity of adsorbents are the principal properties relevant to adsorptive amounts, which depend on pressure, temperature, nature of the adsorbates, and nature of the pores in the adsorbents [17]. Adsorption of amphiphilic molecules on polar solid surfaces can give rise to the formation of the closely packed monolayer film on solid substrate has been reported for adsorption of surfactants layer) adsorption kinetics. The formation of Langmuir monolayer bent surfaces may be interpreted by a simple Langmuir (mono-layer) adsorption kinetics. The formation of Langmuir monolayer on solid substrate has been reported for adsorption of surfactant and dendrimers, and their kinetics behaviors was discussed based on the Langmuir adsorption kinetics [19–21].

Dendrimers are explicitly branched macromolecules with repeating functional units of branching groups, which have versatility, great potentiality, high selectivity and their promising ability for storage [22,23]. Due to wide range of processing possibilities, dendrimer-loaded organoclay [24–26] will provide preferential selectivity among all organoclay. We have developed the advanced organoclay adsorbents with effective capture and storage abilities of gas, which possess binding sites for CO2 adsorption on clays and poly(amide amine) (PAMAM) dendrimers [26]. It has been elucidated that the cation-exchange laponite can load amine-terminated PAMAM dendrimer and become a valuable solid adsorbent with a selective capture capacity for CO2.

The aim of this investigation is to analyze adsorption kinetics using the time-course data of CO2 adsorption obtained in previous paper [26], where adsorption experiments were carried out at the time-course up to 300 min on a thermogravimetric analysis instrument under the N2 gas flow (balance chamber, 40 mL min⁻¹) and the CO2 (pure) gas flow (sample chamber, 60 mL min⁻¹) at room temperature. To the best of our knowledge, there are no investigations that report quantitative analysis of CO2 adsorption on individual binding site on organoclay. In the current analysis, we derive appropriate analytical equations based on Langmuir monolayer adsorption kinetics. The computer simulations are carried out for analyzing kinetics data of CO2 adsorption on clays and organoclay. The estimated adsorption kinetics models and the evaluated kinetics parameters will give us new insights on the adsorption sites for CO2, which are possible on and between clay layers and on dendrimer.

Therefore, the CO2 adsorption kinetics data were first analyzed based on the kinetics equation of Langmuir monolayer adsorption. Scheme 1(1) shows the schematic representation of the Langmuir adsorption mechanism. Supposing that adsorption sites are all equivalent and they are independent of the occupation of neighboring sites, the kinetics of Langmuir monolayer adsorption is described by Eq. (1).

\[\begin{align*}
 k_{1a} & \frac{dN_{1ad}}{dt} = k_{1ad}(N_1 - N_{1ad}) - k_{1d}N_{1ad}. \\
 A + S_1 & \rightleftharpoons A - S_1, \\
 k_{1d}
\end{align*} \]

where \(k_{1a} \) and \(k_{1d} \) are the intrinsic rate constants of adsorption and desorption, respectively, of an adsorbate A on the site \(S_1 \). The surface coverage varies depending on the concentration \(C \) of adsorbate A and the numbers of occupied and nonoccupied adsorption sites, \(N_{1ad} \) and \((N_1 - N_{1ad}) \), respectively, where \(N_1 \) is the total number of adsorption sites. Then the rate equation at a finite time \(t \) is described by

\[\frac{dN_{1ad}}{dt} = k_{1a}C(N_1 - N_{1ad}) - k_{1d}N_{1ad}. \]

When Eq. (2) was integrated,

\[N_{1ad} = N_1 I_1\{1 - \exp(-k_{1obs}t)\}, \quad I_1 = \frac{k_{1ad}C}{k_{1obs}}, \]

and \(k_{1obs} = k_{1ad}C + k_{1d} \).

Eq. (3) is the typical Langmuir adsorption kinetics equation [21]. Since the adsorption kinetics were observed as an adsorbed amount of CO2 on clay (CO2/clay (mg/g) = \(W_{CO2} \)) as a function of time \(t \), the adsorption kinetics can be described as Eq. (4).

\[W_{CO2} = W_{CO2\infty}\{1 - \exp(-k_{1obs}t)\}. \]

where \(W_{CO2\infty} \) is the adsorbed amount of CO2 at \(t = \infty \).

The computer-simulation was carried out based on Eq. (4), and the results were compared to experimental data of CO2 adsorption on pristine laponite, sericite and hydrotalcite clays [26]. Utilized parameters were listed in Table 1, and the fitting curves were drawn in Fig. 1. The calculated kinetics curves did not fit to all the experimental data. This indicates that the simple Langmuir monolayer adsorption mechanism, namely, a single adsorption site model is not available for CO2 adsorption on clays, but another binding site (the second adsorption site) must be provided. If the
site S_2 is independent of the first adsorption site S_1, the adsorption kinetics are described by

$$A + S_2 \rightleftharpoons A - S_2$$

and the number of occupied adsorption sites N_{2ad} is described alike.

$$N_{2ad} = N_1I_1(1 - \exp(-k_{1obs}t)) + N_2I_2(1 - \exp(-k_{2obs}t)),$$

$$I_2 = \frac{k_{2ad}}{k_{2obs}}$$

and $k_{2obs} = k_{2ad} + k_{d}.$ where N_2 is the total number of second adsorption site, and k_{2ad} and k_{d} are the intrinsic rate constants of adsorption and desorption, respectively, on the second binding site of the clay (Scheme 1(2)). Thus, the total number of occupied sites by adsorption is:

$$N_{ad} = N_{1ad} + N_{2ad} = N_1I_1(1 - \exp(-k_{1obs}t)) + N_2I_2(1 - \exp(-k_{2obs}t)).$$

On the description as a total adsorbed amount of CO$_2$ on clay,

$$W_{CO_2} = W_{1CO_2} = \frac{1}{(1 - \exp(-k_{1obs}t))} + W_{2CO_2} = \frac{1}{(1 - \exp(-k_{2obs}t))}.\quad (8)$$

Fig. 2(A)(a) shows a profile of the adsorption kinetics of CO$_2$ on pristine laponite, which computed based on Eq. (8) with parameters of $k_{1obs} = 0.150$ and $k_{2obs} = 0.008.$ The calculation fitted very well (with $r^2 = 0.9994$) to the observed one. The results revealed that while the fast monolayer formation on the site 1 was saturated at an early stage of adsorption, the adsorption on the second site increased slowly with adsorption time. Curve fitting simulation was carried out even for a case of hydrotalcite (Fig. 2(A)(b)) and sericite (Fig. 2(A)(c)). The CO$_2$ adsorption on two sites of hydrotalcite occurred at the same time but one was fast but another was slow. The situation was different for the case of sericite: The slow adsorption started late from the fast adsorption. Then the Eq. (9) had to be applied.

$$W_{CO_2} = W_{1CO_2} = \frac{1}{(1 - \exp(-k_{1obs}t))} + W_{2CO_2} = \frac{1}{(1 - \exp(-k_{2obs}(t - t_0)))}, \quad t - t_0 \leq 0.\quad (9)$$

where t_0 is the delay time. The curve fitting included in Fig. 2(A) indicates that CO$_2$ gas adsorption happens at two different sites on each clay. In common, the fast adsorption reaches the high adsorption amount, and the adsorption amount of the slow adsorption is low. Since the possible adsorption sites of clays are on the outer surfaces and in the interlayers, the fast adsorption may abundantly occur on the clay surfaces and the slow one should poorly arise in the clay interlayers. It should be noted that the slow adsorption on sericite showed the time delay (50 min) (see Fig. 2(A)(c)). Sericite clay with low cation exchange capacity [29] has resulted in the replacement of small amounts of cations by dendrimer molecules [26]. Thus, because clay sheets are tightly bound by bigger K$^+$ than Na$^+$ and Ca$^{2+}$ in laponite [30], the penetration of CO$_2$ between interlayers of clays is rather hard to arise the time-delay.

Table 2 lists the parameters obtained for clays. The high r^2 values mean the well-made curve fitting and the adequate modeling. The W_{1CO_2} and W_{2CO_2} depend on the total number of adsorption sites, the rate constants and the concentration of adsorbate, and the k_{1obs} and k_{2obs} values relate to only the rate constants and the concentration of adsorbate. The numerical values of W_{1CO_2} were always largest for laponite, medium for hydrotalcite and lowest for sericite, although the order of k_{1obs} values was different, namely the values of hydrotalcite were smallest. Moreover, W_{1CO_2} and k_{1obs} were always larger for site 1 than for site 2. Since the order of W_{1CO_2} values for laponite, hydrotalcite and sericite is same as that of their surface area [26], mainly the number of binding sites depending on the surface area can contribute W_{1CO_2}. From the similar concept, the larger W_{1CO_2} values for site 1 than for site 2 may come from the larger number of binding site for site 1 than for site 2.

Since CO$_2$ molecules have higher collision frequency on the outer surface than in the interlayer, the k_{1obs} may be always larger than k_{2obs} because of less space for CO$_2$ to pass through in interlayer. Small numerical values of k_{2obs} indicate that the adsorbed CO$_2$ molecules are less attracted by binding sites and easy remove on it. On the other hand, negative zeta potential, depending on surface charge, was higher for laponite than sericite, and hydrotalcite had positive zeta potential [26]. This indicates that the attraction of CO$_2$ on binding site should depend on the surface charge. Probably, it is stronger on the highly negative surface but lowest on the positive surface. It can be assumed that the counter ions are easier removable from outer surface rather than from interlayer due to the steric hindrance and the surface charge of outer surface will be large in comparison with that of interlayer, raising the smaller k_{2obs}. Incidentally, since both laponite and sericite clays have the similar values of d-spacing [26], the penetration of CO$_2$ inside the clays will have similar probability and thus the k_{2obs} values are similar.

3. Adsorption kinetics of CO$_2$ on organoclays

Organoclays (termed as Lapn, Hydn and Serw, where n indicates the weight proportion of dendrimer against clay) have been synthesized by means of hydrothermal reaction of clays with PAMAM dendrimers under the acidic condition, and the time-course CO$_2$ adsorption has been performed on them ([26], Fig. S2). Cation exchange clays (laponite and sericite) were reacted with amine-terminated fourth generation (G4.0) PAMAM dendrimer, and anion exchange clay (hydrotalcite) loaded carboxylate-terminated G4.5 PAMAM dendrimer. The adsorption of CO$_2$ gas on organoclays took place similarly to the adsorption on pristine clays, that is, it initially increased fast and gradually saturated (see Fig. 2(B)). Moreover, the adsorption amounts of CO$_2$ on organoclays of laponite and sericite increased with increasing dendrimer/clay ratio on preparation [26]. These results indicate the existence of the adsorption site.
Fig. 2. Computer simulation based on the multi-site Langmuir monolayer adsorption model for CO₂ adsorption on (A) pristine clays and (B) organoclays of (a) (d) laponite, (b) (e) hydrotalcite and (c) (f) sericite. The corresponding parameters are listed in Table 2. Red: site 1; blue: site 2; green: site 3; pink: fitting curve; black: experimental data (26), Fig. S2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Parameters adopted on computer simulation in Figs. 2 and 3.

<table>
<thead>
<tr>
<th>Clay</th>
<th>$W_{\text{ICD}_{2}}$ (mg/g)</th>
<th>$k_{\text{site 1}}$ (min⁻¹)</th>
<th>$W_{\text{ICD}_{2}}$ (mg/g)</th>
<th>$k_{\text{site 2}}$ (min⁻¹)</th>
<th>$W_{\text{ICD}_{2}}$ (mg/g)</th>
<th>$k_{\text{site 3}}$ (min⁻¹)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap0.0</td>
<td>8.132</td>
<td>0.1505</td>
<td>3.034</td>
<td>0.0080</td>
<td>5.000</td>
<td>0.1000</td>
<td>0.9994</td>
</tr>
<tr>
<td>Lap0.1</td>
<td>8.233</td>
<td>0.1555</td>
<td>3.034</td>
<td>0.0080</td>
<td>5.000</td>
<td>0.1000</td>
<td>0.9973</td>
</tr>
<tr>
<td>Lap0.2</td>
<td>7.350</td>
<td>0.1624</td>
<td>3.093</td>
<td>0.0085</td>
<td>5.800</td>
<td>0.1004</td>
<td>1.0000</td>
</tr>
<tr>
<td>Lap0.3</td>
<td>7.105</td>
<td>0.1678</td>
<td>3.093</td>
<td>0.0085</td>
<td>8.000</td>
<td>0.1000</td>
<td>0.9978</td>
</tr>
<tr>
<td>Lap0.4</td>
<td>6.500</td>
<td>0.1770</td>
<td>3.550</td>
<td>0.0100</td>
<td>9.250</td>
<td>0.1070</td>
<td>1.0000</td>
</tr>
<tr>
<td>Lap0.5</td>
<td>6.000</td>
<td>0.1770</td>
<td>3.820</td>
<td>0.0125</td>
<td>10.030</td>
<td>0.1251</td>
<td>0.9984</td>
</tr>
<tr>
<td>Lap0.6</td>
<td>6.000</td>
<td>0.1804</td>
<td>3.880</td>
<td>0.0168</td>
<td>10.055</td>
<td>0.1350</td>
<td>0.9945</td>
</tr>
<tr>
<td>Lap0.7</td>
<td>6.000</td>
<td>0.1802</td>
<td>3.880</td>
<td>0.0170</td>
<td>10.801</td>
<td>0.1372</td>
<td>0.9995</td>
</tr>
<tr>
<td>Hyd0.0</td>
<td>5.767</td>
<td>0.0101</td>
<td>2.356</td>
<td>0.0030</td>
<td>2.900</td>
<td>0.1000</td>
<td>0.9985</td>
</tr>
<tr>
<td>Hyd0.1</td>
<td>3.600</td>
<td>0.0094</td>
<td>1.500</td>
<td>0.0025</td>
<td>1.000</td>
<td>0.0007</td>
<td>0.9998</td>
</tr>
<tr>
<td>Hyd0.2</td>
<td>3.000</td>
<td>0.0078</td>
<td>1.350</td>
<td>0.0030</td>
<td>1.000</td>
<td>0.0007</td>
<td>1.0000</td>
</tr>
<tr>
<td>Hyd0.3</td>
<td>0.980</td>
<td>0.0091</td>
<td>1.300</td>
<td>0.0074</td>
<td>0.984</td>
<td>0.0007</td>
<td>0.9996</td>
</tr>
<tr>
<td>Hyd0.4</td>
<td>0.551</td>
<td>0.0085</td>
<td>0.900</td>
<td>0.0075</td>
<td>0.996</td>
<td>0.0007</td>
<td>0.9933</td>
</tr>
<tr>
<td>Hyd0.5</td>
<td>0.551</td>
<td>0.0085</td>
<td>0.850</td>
<td>0.0076</td>
<td>0.999</td>
<td>0.0007</td>
<td>0.9946</td>
</tr>
<tr>
<td>Hyd0.6</td>
<td>0.540</td>
<td>0.0084</td>
<td>0.850</td>
<td>0.0075</td>
<td>1.003</td>
<td>0.0007</td>
<td>0.9995</td>
</tr>
<tr>
<td>Ser0.0</td>
<td>2.265</td>
<td>0.0150</td>
<td>0.997</td>
<td>0.0071</td>
<td>3.282</td>
<td>0.0210</td>
<td>0.9997</td>
</tr>
<tr>
<td>Ser0.1</td>
<td>2.201</td>
<td>0.0151</td>
<td>1.500</td>
<td>0.0100</td>
<td>5.507</td>
<td>0.0211</td>
<td>0.9993</td>
</tr>
<tr>
<td>Ser0.2</td>
<td>2.130</td>
<td>0.0171</td>
<td>1.900</td>
<td>0.0150</td>
<td>5.507</td>
<td>0.0211</td>
<td>0.9992</td>
</tr>
<tr>
<td>Ser0.3</td>
<td>2.000</td>
<td>0.0242</td>
<td>3.300</td>
<td>0.0260</td>
<td>8.002</td>
<td>0.0310</td>
<td>0.9992</td>
</tr>
<tr>
<td>Ser0.4</td>
<td>2.000</td>
<td>0.0240</td>
<td>3.700</td>
<td>0.0275</td>
<td>8.690</td>
<td>0.0334</td>
<td>0.9976</td>
</tr>
<tr>
<td>Ser0.5</td>
<td>2.143</td>
<td>0.0251</td>
<td>3.700</td>
<td>0.0275</td>
<td>8.760</td>
<td>0.0350</td>
<td>0.9985</td>
</tr>
</tbody>
</table>
on loaded dendrimer besides adsorption sites on surfaces and in interlayers of clays. On the other hand, since the adsorption amount of CO₂ on hydrotalcite clay rather decreased with loading of dendrimer, carboxylate-terminated dendrimer does not adsorb CO₂ gas or disturb the CO₂ adsorption because of no affinity between them.

When the behavior of the CO₂ adsorption on organoclays is quantitatively evaluated, the necessary consideration is the additional binding site on dendrimer. If this third adsorption site (Scheme 1(3)) is not involved in the first and second adsorption sites, the total number of occupied sites by adsorption is

\[N_{\text{ad}} = N_{101} + N_{102} + N_{103} = N_1 I_1(1 - \exp(-k_{1obs} t)) + N_2 I_2(1 - \exp(-k_{2obs} t)) + N_3 I_3(1 - \exp(-k_{3obs} t)) \]

(10)

Alternatively, a total adsorbed amount of CO₂ on clay is

\[W_{\text{CO}_2} = W_{\text{CO}_2,1}(1 - \exp(-k_{1obs} t)) + W_{\text{CO}_2,2}(1 - \exp(-k_{2obs} t)) + W_{\text{CO}_2,3}(1 - \exp(-k_{3obs} t)). \]

(11)

As shown in Fig. 3(A), the good agreement of the calculated curves with the observed curves were obtained, when three types of monolayer formation in organo laponite clays was supposed according to Eq. (11). Similar good fitting was achieved even organo hydrotalcite and organo sericite clays, as seen in Fig. 3(B) and (C). These results indicate that there is an additional site on organoclays compared with pristine clays. The optimum parameters of \(W_{\text{CO}_2,1} \) and \(k_{obs} \) for the good fitting with higher \(r^2 \) values are listed for each site in Table 2, and the numerical values for three organoclays were plotted in Fig. 4 as a function of dendrimer/clay value.

The \(W_{\text{CO}_2,1} \) (Fig. 4(a)) of organoclays of laponite and hydrotalcite decreased with increasing dendrimer content, while the \(W_{\text{CO}_2,1} \) of sericite decreased scarcely. These results indicate the decrease of binding sites on surfaces of laponite and hydrotalcite clays because of large amount of dendrimer adsorption on them against less adsorption on sericite [26]. On the other hand, the \(k_{obs} \) values (Fig. 4(b)) of laponite and sericite organoclays slightly increased with dendrimer content and these of hydrotalcite was not changed, indicating few or no variation of the rate constants, although the rate constant of laponite was larger than those of sericite and hydrotalcite. These results suggest that the rate constant of CO₂ is not strongly affected by the loading of dendrimer.

In the case of internal binding site, \(W_{\text{CO}_2,2} \) and \(k_{obs} \) (see Fig. 4(c) and (d)) of laponite and sericite organoclays increased with dendrimer content, because the intercalation of dendrimer increases free volume in clay interlayers to adsorb CO₂. However, \(W_{\text{CO}_2,2} \) and \(k_{obs} \) of hydrotalcite decreased and slightly increased, respectively. These different behaviors between cationic and anionic clays may depend on the character of dendrimer as describe below.

The \(W_{\text{CO}_2,3} \) and \(k_{obs} \) values (see Fig. 4(e) and (f)) always increased in the case of laponite and sericite organoclays, since the binding site of dendrimer and the rate constant of CO₂ adsorption on dendrimer site increased with increasing dendrimer content. In contrast, the \(W_{\text{CO}_2,3} \) and \(k_{obs} \) values of hydrotalcite organoclay were independent of dendrimer content and lower than those of laponite and sericite organoclays. These results indicate that CO₂ gas scarcely adsorbs on dendrimer site on hydrotalcite organoclays. Since cationic dendrimer was adsorbed on cation-exchange clays and anionic dendrimer was used for anion-exchange clay, the affinity of CO₂ with dendrimer should occur the different behaviors on two kinds of organoclays. Namely, CO₂ is affiliative to amine-terminated dendrimer but not to carboxylate-terminated dendrimer.

The analysis based on Eq. (11) indicates that CO₂ gas adsorption happens at three different sites on the organoclays. The weight adsorption of CO₂ at each site for clays with dendrimer content of 0.1 was calculated according to Eq. (11) and plotted in Fig. 2(B) in comparison with the plot for pristine clay in Fig. 2(A). From the comparison, it is apparent that the adsorption of CO₂ gas on binding sites of organoclays is taking place similar to that of pristine clays such as on outer surfaces of organoclays (site 1) and in interlayers of organoclays (site 2). However, additionally, den-
drimer provides a binding site for CO2 gas adsorption in the case of organoclays (site 3).

In the case of laponite organoclay, while CO2 adsorption on site 1 and site 3 sharply increased with time as well as on sites of pristine clay, the CO2 adsorption on site 2 of organoclay was rather gradual (see Fig. 2(B)(d)). This indicates that the CO2 adsorption on dendrimer happens easier than into clay interlayer and, in other words, the adsorption into interlayer is disturbed by intercalated dendrimer. In this view, the binding site on the surface of sericite organoclay is blocked by adsorbed dendrimers, since CO2 adsorbs quickly on dendrimers. The different behavior from laponite organoclay may come from the CO2 adsorption on dendrimers existing at different locations: Small amount of binding site (see Table 2) of sericite should be partly occupied by the adsorption of dendrimers. Then CO2 is selectively adsorbed on dendrimers loaded on the surface of clay, while dendrimers intercalated into interlayers of clay are less as described above. In common between organoclays of laponite and sericite, it should be noted that CO2 adsorption at site 1 and 2 on clays closed almost same amount as pristine clays at long adsorption period and the increase of total CO2 adsorption on organoclays come from the increase of adsorption on site 3 (on dendrimer).

The adsorption behavior of CO2 at site 1 and 2 on hydrotalcite organoclay was similar to that on pristine hydrotalcite clay but the total amount of CO2 adsorption decreased (see Fig. 2(B)(e)). Meanwhile, the adsorption on dendrimer (site 3) was less, that is, anionic (carboxylate-terminated) dendrimer scarcely adsorb CO2 on anion-exchange clay because of the nonaffinity of carboxylate-terminal group to CO2 in contrast to the affinity of amine-terminated dendrimer to CO2. This phenomenon limits even the CO2 adsorption on site 1 and 2 of clay, since loaded anionic dendrimer should occupy the sites (1 and 2) of clays and the terminal groups with nonaffinity disturb the approach of CO2 to site 1 and site 2 of clay.

Based on the results described above, the estimated adsorption of CO2 on sites of pristine clays and organoclays is represents schematically in Scheme 2. Site 1, 2 and 3 are on the surface of clays, between clay layers and on dendrimers, respectively, as described in Scheme 2. Cation-exchange and anion-exchange clays behave differently due to the difference of binding sites on them. In the case of cation-exchange clays, larger amount of CO2 is adsorbed on site 1 than site 2, because the penetration of CO2 between clay layers is not easy. When cationic dendrimers are loaded on clays, CO2 can adsorb even on dendrimer (site 3) and the adsorption is rather facile. Then CO2 adsorption is inhibited on site 2 for laponite organoclays and on site 1 for sericite as explained above. In the case of anion-exchange clay, the CO2 adsorption on site 1 is larger than on site 2 as well as the case of cation-exchange clays. When
anionic dendrimers are loaded on clay, less amount of CO₂ gas is adsorbed on both sites, and the negligible amount of CO₂ adsorption on dendrimer (site 3) results.

4. Conclusions

In the present work, kinetics equations for Langmuir monolayer adsorption consisting of three independent adsorption sites were derived for analyzing adsorption of gas molecules on adsorbents, which are organoclays consisting of cation-exchange clays loaded cationic dendrimer and an anion-exchange clay loaded anionic dendrimer. Up to now, although many investigations based on Langmuir kinetics have been reported [19,21,31–36], this is the first report elucidated binding sites and the amount and rate constant of CO₂ adsorption at each binding site on clays and dendrimer-loaded organoclays. Clay layers have two binding sites of external binding unit and internal binding unit (site 1 and 2, respectively). Organoclays have an additional binding site on dendrimer (site 3). The variation of the amount and rate constant of adsorption as a function of dendrimer content differently behaved depending on cation-exchange clays (laponite and sericite) and anion-exchange clay (hydrotalcite), where amine-terminated and carboxylate-terminated dendrimers were loaded, respectively.

The adsorption amounts of CO₂ on cation-exchange organoclays decreased or unchanged on site 1 and increased on site 2 and 3 with dendrimer content, but the rate constants for three sites increased with dendrimer content, although the rate constants were always higher on external binding site than on internal binding site. For the case of an anion-exchange organoclay, the adsorption amount on two sites of clay decreased but it on dendrimer and the rate constants for three sites do not change remarkably with dendrimer content.

Two binding sites on clay should be clearly distinguished, because the binding of CO₂ on outer surface of clay is almost double to that in interlayers of clay. The amine-terminated dendrimer has been elucidated to act as a binding site for the adsorption of CO₂ gas due to the high affinity with CO₂, although such action is absent for the case of carboxylate-terminated dendrimer due to less affinity. However, the adsorption of CO₂ on clay slows down after surface-covering by enough amount of dendrimer because of the hindrance by dendrimer loaded on clay.

Recently Chen et al. [37] have reported a review article relating to CO₂ capture by amine-functionalized nanoporous materials. Although collected numerical values of CO₂ adsorption capacity in the literature are higher than those of present clays, it may be due to the trapping of CO₂ into nanopores of nanoporous materials. However, if the CO₂ adsorption capacity of Lap0.7 (W₃CO₂⁻ = 10.8 mg/g (organolaponite), see Table 2) calculated on the basis of weight of organolaponite was recalculated on the basis of the dendrimer content (0.40 g/g (laponite), see Table 1 in [26]), the CO₂ adsorption capacity should be 36.4 mg/g (dendrimer). This value is comparable to the reported values in Table 1 in [37].

Acknowledgments

This work was financially supported by National Taiwan University of Science and Technology, Taiwan, under a Grant number 100H451201. KS appreciates the financial support from National Taiwan University of Science and Technology, Taiwan, for student scholarship. The authors gratefully thank Prof. M. Uji-hara, National Taiwan University of Science and Technology, Tai- wan, for his technical support.

References
