Forces between Two Glass Surfaces with Adsorbed Hexadecyltrimethylammonium Salicylate

Toyo Imae,*†‡ Motohisa Kato,‡ and Mark Rutland§,¶

Research Center for Materials Science and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan, and School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia

Received June 24, 1999. In Final Form: October 29, 1999

Forces have been measured for hexadecyltrimethylammonium salicylate (C16TASal) layers on glass beads. During the inward process, hydrophobic attraction occurred at lower adsorption of C16TASal and electrostatic repulsion interactions happened at higher adsorption. While the jump-in phenomenon was observed for solutions of concentrations below the critical micelle concentration (cmc = 0.15 mM), the step-in phenomenon was characteristic for solutions at the cmc and above the cmc, suggesting the push-out of adsorbed C16TASal layers and/or inserted micelles. The remarkable pull-off phenomenon on the outward process occurred for all solutions, indicating a strong interaction between C16TASal molecules. For aqueous 0.15 mM C16TASal solutions of various NaSal concentrations, on the inward process, the electrostatic repulsive interaction decreased with adding NaSal. This is due to the electrostatic shielding by salt excess. The height of the force wall on the inward process reached a maximum at 0.01 M NaSal, but the interlocking between molecules on two surfaces during the outward process was minimized at 0.1 M NaSal. These tendencies, which are different from those of the electrostatic repulsion interaction, imply the strong cohesion between adsorbed C16TASal layers.

Introduction

Cationic surfactants with aromatic counterions such as alkyltrimethylammonium and alkyltrimethylpyridinium salicylates display remarkable rheological behavior, such as spinnability and viscoelasticity in aqueous solutions.1–5 The characteristic behavior results from the fact that rodlike micelles entangle and contact each other to form a three-dimensional pseudonetwork, although the behavior is not observed in aqueous solutions of entangled rodlike micelles of cationic surfactants with halide counterions.6,7 Then the specific adsorption and penetration ability of salicylate counterions are related to the solution behavior and the micellar growth.7 Thus it is necessary to elucidate the electrical structure of micelles and the interaction forces between micelles.

Imae et al.3,4,8,9 have reported size, electrophoretic mobility, and rheological behavior of tetradecyl- and hexadecyltrimethylammonium salicylate (C14TASal, C16TASal) micelles in aqueous media. While the length of rodlike micelles increases with increasing sodium salicylate (NaSal) concentration up to 0.1 M, further addition of NaSal diminishes the micellar size to be spherical at 1 M NaSal. The spinnable, viscoelastic behavior of the solutions depends on micellar size and shape.3,4 The net surface charge of micelles converts the sign from positive to negative through neutral at about 0.1 M NaSal.8,9 This shows that the micellar size and the solution behavior are dominated by the specific adsorption and penetration of salicylate ions.

Cassidy and Warr10 have determined surface potentials of mixtures of C14TABr and NaSal in water by the titration of a micelle-bound indicator and found the strong binding of salicylate ion which lowers effectively the surface potential of the micelles. On the other hand, the zeta potentials calculated from electrophoretic mobility by using the Smoluchowski equation11 are lower than the electrostatic potentials at the micellar surface. Cassidy and Warr10 have proposed the model wherein adsorption sites in micelles continuously vary from the exterior surface binding salicylate to the hydrophobic core intercalating salicylate.

The electrostatic potential as well as the other interaction potentials can also be determined by the force measurement between two surfaces which adsorb molecules or are covered by them. At present, the Israelachvili12 and Parker11 surface force apparatuses and the force microscopy13 are available for measurement and analysis of surface interactions and forces. The force measurement between surfaces covered by C16TASal layers should give us more detailed consideration of the interactions within and between micelles and their origin. In the present work, the measurement is performed between glass beads which
are immersed in aqueous solutions of various C16TASal concentrations below and above the critical micelle concentration \(C_0 \) (cmc = 0.15 mM) and of different NaSal concentrations. The force measurements have been reported for aqueous solutions of cationic surfactants with halide counterions,\(^{14-22}\) but no measurements have been made for surfactants with salicylate counterion. The influence of counterion species is discussed.

Experimental Section

Synthesis of C16TASal has been described previously.\(^{3-5}\) The NaSal used was of commercial grade. Water was redistilled from alkaline KMnO4.

The measurement and analysis of surface interactions and forces (MASIF, Anutech Pty Ltd.) apparatus, based on the development by Parker,\(^{11}\) was used for the surface force measurement. Two surfaces were mounted at the ends of the piezoelectric tube and the bimorph force sensor, respectively. The bimorph enclosed in a Teflon sheath was clamped to a solution chamber. The piezoelectric motion from a linear variable displacement transducer (LVDT) and the signal from the bimorph charge amplifier were recorded in response to the motor translation of the piezoelectric tube during the course of inward and outward force runs.

The surfaces were pushed together until contact. Then the motion of the piezoelectric tube was transmitted directly to the bimorph sensor. The resulting straight line was used to calculate the deflection of the bimorph signal using the displacement/LVDT calibration constant of 0.526 m/V which was determined by interferometry. The force \(F \) in the surface force region was then obtained by multiplying the deflection by the spring constant (-200 N/m), which was determined by the weight method. The glass surfaces were prepared by melting the end of a 1.5 mm glass rod in gas burner until a molten droplet of glass is formed. The radius (1.2 mm) of droplet was measured by a micrometer. Then the force \(F \) scaled by the effective radius of curvature (\(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads) was plotted as a function of separation, which was evaluated as the difference of deflections in the force region and in contact.

Results

For aqueous C16TASal solutions of various C16TASal concentrations without NaSal, the force curves on the inward process are plotted in Figure 1 as a function of separation. While the weak repulsive interaction occurred between two glass surfaces in water without C16TASal, and the attraction was observed in a 0.01 mM C16TASal solution, the repulsive force was again generated at C16TASal concentrations above 0.01 mM. At the shorter intersurface separation in 0.01 and 0.05 mM solutions, the surfaces jumped into an adhesive contact at 7 and 9 nm separations, respectively. On the other hand, the steep increase of the repulsive force was observed at 4–5 nm separation for a 0.15 mM solution and at 8–9 nm separation for a 0.3 mM solution. The push-out occurred at one step (32–35 mM/m) for the 0.15 mM solution and at two steps (first at 21–40 mM/m and second at 40–42 mM/m) for the 0.3 mM solution. The positions of steps were marked in Figure 1.

\(D_1 \) and \(D_2 \) of two glass beads) was plotted as a function of separation, which was evaluated as the difference of deflections in the force region and in contact.

\[5 \] The radius (1.2 mm) of droplet was measured by a micrometer.

\[1 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[2 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[3 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[4 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[5 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[6 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[7 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[8 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[9 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[10 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[11 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[12 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[13 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[14 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[15 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[16 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[17 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[18 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[19 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[20 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[21 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

\[22 \] \(R = D_1 D_2 (D_1 + D_2) \) for diameters \(D_1 \) and \(D_2 \) of two glass beads.

Figure 1. Force versus separation curves, on the inward process, between glass surfaces immersed in C16TASal solutions. C16TASal concentration (mM): (a) 0; (b) 0.01; (c) 0.05; (d) 0.15; (e) 0.3. The inserted figure represents the force versus separation for 0.01 mM (b) and 0.05 mM (c) C16TASal solutions and the calculated van der Waals attration at a Hamaker constant of \(0.8 \times 10^{-20} \) J. Arrows represent the starting point of push-out steps.

Figure 2. Force versus separation curves, on the outward process, between glass surfaces immersed in water and a 0.15 mM C16TASal solution.

The interesting results were obtained on the outward process where two surfaces in contact are pulled apart. Figure 2 shows the force curves on the outward process between glass surfaces immersed in water without C16TASal and in 0.15 mM C16TASal solution. While the force
curve on the outward process in water turned back the same way as for the inward process, the strong pull-off phenomenon was observed in the 0.15 mM solution and in other C16TASal solutions examined. The adhesion forces to be equivalent to the pull-off force are plotted in Figure 3 as a function of C16TASal concentration \(C(M) \). The strongest interlocking was found at the 0.05 mM solution.

Figure 4 shows the force versus separation curves, on the inward process, between glass surfaces immersed in aqueous solutions of various NaSal concentrations at 0.15 mM C16TASal concentration. While the repulsive interaction occurred at longer separation for a solution without NaSal, it decreased with adding NaSal. The push-out phenomenon was the common profile for all solutions. The push-out occurred at a distance of 3–5 nm and surface pressure of 20–40 mN/m, depending on NaSal concentration. Figure 5 shows the force-wall height as a function of ionic strength \(\log(C_0 + C_s) \), where \(C_s(M) \) is NaSal concentration. The height reached a maximum at the ionic strength of 0.01 M. The strong adhesion occurred on the outward process for all solutions examined. As shown in Figure 5, the interlocking decreased with increasing NaSal concentration and increased at the ionic strength above 0.1 M.

Discussion

The interaction force \(F = -(\partial V_{pp}/\partial H)_p \) between two spheres separated by the separation \(H \) is related to the interaction potential energy \(V_{pp} \) per unit area between two flat planar surfaces, under the Derjaguin approximation,\(^\text{(23)}\) by

\[
F/\pi R = V_{pp}
\]

if the separation between the surfaces is markedly smaller than the radii of spheres. \(V_{pp} \) is the interaction potential between two sphere surfaces. The interaction potential between glass surfaces with adsorbed C16TASal is described as a sum of the electrostatic repulsion potential \(V_{elec} \), the hydration repulsion potential \(V_{hydr} \), the steric repulsion potential \(V_{steric} \), the London–van der Waals attraction potential \(V_{vdw} \), and the hydrophobic attraction potential \(V_{hcib} \), that is

\[
V = V_{elec} + V_{hydr} + V_{steric} + V_{vdw} + V_{hcib}
\]

The interaction forces between two silica surfaces immersed in aqueous NaCl solutions have been observed in the Israelachvili surface force apparatus and the force microscope.\(^\text{(13,15,24–26)}\) Ducker et al.\(^\text{(13)}\) have measured, by using the force microscope, the surface force between a silica-glass sphere and a flat oxidated silicon wafer in an aqueous NaCl solution. At smaller separations, no adhesive minimum or van der Waals attraction dominates, but the force is greater than that predicted from the DLVO theory by using an exact numerical solution to the Poisson–Boltzmann equation and a Hamaker constant of \(0.8 \times 10^{-20} \) J. A similar deviation from the theoretical calculation is also obtained in the force curve from the Parker surface force apparatus between two glass beads in water in the present work. The possible explanation of this additional short-range repulsive effect described by Horn et al.,\(^\text{(24)}\) Parker et al.,\(^\text{(14,15)}\) and Rutland\(^\text{(25)}\) is the contribution of hydration repulsion. This indicates that water adjacent to the silica surface is not equivalent to bulk water. Ducker et al.\(^\text{(13)}\) suggest the existence of a gel layer on the surface of silica and a shift in the position of

\[(23)\] Derjaguin, B. V. Kolloid-Z. 1934, 69, 155.

the surface charge plane besides the hydration of silica. According to Vigil et al., the repulsion may be a steric/entropic one originating from the surface-located polysilicates. Larson et al. have supported Vigil’s explanation.

In a C16TASal solution without NaSal, the interaction force is always attractive at a 0.01 mM C16TASal concentration, which is far below the cmc. Since the isoelectric point of silica is around pH 3, glass surfaces are negatively charged in the solutions examined in the present work. Then the electrostatic adsorption of hexadecyltrimethylammonium (C16TA) ions occurs on the SiO2 centers of glass. The adsorption model is represented in Figure 6. As seen in the inset of Figure 1, the force curve for the 0.01 mM C16TASal solution is more attractive than the glass. The adsorption model is represented in Figure 6. The observation of the long-range attractive force stronger than expected for the van der Waals effect. The observation of the long-range attractive force stronger than expected for the van der Waals potential calculated with a Hamaker constant of 0.8 × 10−20 J. Therefore, the attraction may include the hydrophobic interaction besides the van der Waals effect. The observation of the long-range attractive force stronger than expected for the van der Waals attraction has been reported between hydrophobic silanated glass surfaces, between neutral deposited monolayers of double-chain cationic surfactants, and between adsorbed layers of hexadecyltrimethylammonium bromide (C16TAB) on glass and silica surfaces. The additional force is described by an exponential attraction F/R = −exp(−H/6) with constants a and b for the forces between silanated glass surfaces in water. When the exponential equation is applied to the force curve at 0.01 mM C16TASal concentration in Figure 1 in the present work, the values of a = 2.4 and b = 3.0 are the best fit to the observed force curve. The values are close to those (a = 3.2, b = 5.6) reported by Parker and Claesson.

At the short separation below 7 nm on the force curve at the 0.01 mM C16TASal solution, the surfaces are pulled into the adhesion by the apparent attractive interaction. The same phenomenon is observed for C16TAB on glass and mica. Parsegian and Podgornik have argued that this apparent attraction may be due to a sudden reduction of the repulsive double-layer interaction. However, Parker et al. insist that the experimental results are not necessarily consistent with the model. The reason may be that the presence of adsorbed surfactants on surfaces renders the surface partially hydrophilic, and the resulting high intersurface tension against water leads to adhesion. The apparent attractive interaction pulls surfaces into the adhesion at the short separation in the force curve for a 0.05 mM C16TASal solution, as well as for a 0.01 mM C16TASal solution. The Debye−Hückel parameter κ and the electrostatic potential ψ are calculated on the basis of the DLVO theory and listed in Table 1, where the data for water without C16TASal are also

Table 1. Debye−Hückel Parameter and Electrostatic Potential of Glass Surfaces in Aqueous C16TASal Solutions with and without NaSal

<table>
<thead>
<tr>
<th>C, mM</th>
<th>Cν, M</th>
<th>κ−1, nm</th>
<th>ψ, mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>−77</td>
</tr>
<tr>
<td>0.05</td>
<td>43</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>10−25</td>
<td>163−177</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>18−50</td>
<td>136−149</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>9.0−25</td>
<td>72−88</td>
<td></td>
</tr>
<tr>
<td>10−3</td>
<td>3.0−4.0</td>
<td>32−66</td>
<td></td>
</tr>
<tr>
<td>10−2</td>
<td>0.96−10</td>
<td>12−22</td>
<td></td>
</tr>
<tr>
<td>10−1</td>
<td>0.30−6.7</td>
<td>−18−24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15−42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(28) Parker, J. L.; Claesson, P. M. Langmuir 1994, 10, 635.
The structure of a defective bilayer at concentrations of 1/3 the cmc (C_{16}TASal) and a solution. They favorably support TAB layer adsorbed at the interface between an amorphous silica plate and a solution. They indicate that the adsorption equilibrium for C_{16}TAB is achieved at the cmc in the present work. Monolayer adsorbed on a surface, as well as the push-out step-in distances are equivalent to the push-out of each adsorbed monolayer is pushed out. The remarkable step-in phenomenon is reported for C_{16}TAB adsorbed on both surfaces, as illustrated in Figure 6. Such trapped molecules act to disturb the hydrophobic interactions between C_{16}TASal layers, different from the case below the cmc.

The characteristic profile for C_{16}TASal solutions at cmc and higher concentration is the step-in phenomenon. The step-in distances of 4–5 nm for a 0.15 mM solution and 8–9 nm for a 0.30 mM solution correspond to two- and four-layer separations, respectively. As illustrated in Figure 6, bilayers of C_{16}TASal are adsorbed on each glass surface at the cmc and micelles are placed between them at concentration above the cmc. On the inward process at the cmc, each monolayer within adsorbed bilayers is pushed out. On the other hand, at concentration above the cmc, collapsed micelles are pushed out and, in turn, each adsorbed monolayer is pushed out. The remarkable step-in phenomenon is reported for C_{16}TAB adsorbed layers on glass surfaces.15 and for hexadecylpyridinium chloride (C_{16}PC) adsorbed layers on silica surfaces.19 Their step-in distances are equivalent to the push-out of each monolayer adsorbed on a surface, as well as the push-out of the C_{16}TASal system at the cmc in the present work. However, their force-wall heights are far below that of the C_{16}TASal system. This indicates the stronger and more compact adsorption of C_{16}TASal than of C_{16}TAB on surfaces.

Rennie et al.34 have reported the result of specular neutron reflection in order to study the structure of a C_{16}TAB layer adsorbed at the interface between an amorphous silica plate and a solution. They favorably support the structure of a defective bilayer at concentrations of 1/3 and 2/3 the cmc (0.9 mM). Then the structure of C_{16}TASal layers can be a less defective bilayer at the corresponding concentrations, as illustrated in Figure 6.
charge is changed from positive to negative at 0.1 M NaSal. This behavior results from the shielding of electrostatic repulsion between cationic surfactants in micelles and the excess penetration of salicylate ions in micelles. The shielding of electrostatic repulsion induces the more compact arrangement of surfactant molecules in micelles and in adsorbed layers on glass beads. This is consistent with the fact that the force-wall by the adsorbed layers on glass beads heights with increasing ionic strength (see Figure 5). However, at high NaSal, excess salicylate ions penetrate into hydrophobic regions of cationic surfactant layers on glass beads. Then the hydrophobic interaction between surfactants is suppressed and, therefore, the force-wall height is decreased.

The adhesion force is related to the hydrophobic interaction and is strong for a more compact arrangement of surfactant molecules. However, at high ionic strengths up to 0.1 M NaSal, excess NaSal molecules get between surfactant layers on glass beads contacting, resulting in the decrease of adhesion force, as seen in Figure 5. On the other hand, at 1 M NaSal, excess salicylate ions adsorb on glass beads rather than between surfactant layers. Then the adhesion force at 1 M NaSal is higher than that at 0.1 M NaSal. The adsorption models at different ionic strengths are schematically represented in Figure 9.

Conclusions

Force measurements have been carried out between C16TASal layers adsorbed on glass beads from aqueous solutions. During the inward process, the hydrophobic attraction interaction occurred at lower adsorption of C16TASal, and the electrostatic repulsion interaction was observed for aqueous C16TASal solutions of concentrations above 0.01 mM. The jump-in phenomenon was observed at 7−9 nm separation for solutions of concentrations below the cmc. The characteristic profile for aqueous C16TASal solutions of cmc and higher concentrations is the step-in phenomenon. The push-out distances, 4−5 and 8−9 nm for solutions of 0.15 and 0.3 mM C16TASal, respectively, correspond to about two- and four-layer thicknesses of C16TASal, suggesting the push-out of adsorbed C16TASal layers and/or inserted micelles. The remarkable pull-off phenomenon occurred, for all solutions examined here, on the outward process where the two surfaces in contact were pulled apart. The adhesion was strongest at 0.05 mM, which is below the cmc. This indicates the strong interaction between C16TASal molecules, besides the interaction of C16TASal with glass.

For aqueous solutions of various NaSal concentrations up to 1 M at a 0.15 mM C16TASal, on the inward process, the electrostatic repulsive interaction at longer separations decreased with adding NaSal. This is due to the electrostatic shielding by salt excess. While the push-out at shorter separations was 3−5 nm for all solutions, the height of a force wall at 15−40 mN/m reached maximum at 0.01 M NaSal. During the outward process, the interlocking was minimized at 0.1 M NaSal. These tendencies, which are different from that of the electrostatic repulsion interaction, imply the strong cohesion between adsorbed C16TASal layers.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 05403012) by the Ministry of Education, Science and Culture in Japan. Author’s are grateful to Mr. M. Jarnyk and H. Blemings of Anutech Pty Ltd. for their technical assistance.

LA990824Y