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med silica and triethanolamine (TEA) was used as a precursor for the sol-gel
synthesis of M-SBA-1 (M=Fe and Ti) at room temperature using cetyltrimethylammonium bromide as a
template, and dilute solutions of ferric chloride and titanium glycolate as metal sources. Powder X-ray
diffraction (XRD) showed the mesoporous materials to be well-ordered cubic structures, while N2

adsorption/desorption measurements yielded high surface areas. Diffuse reflectance UV–visible spectroscopy
demonstrated that iron (Fe3+) and titanium (Ti4+) were incorporated in the framework of the calcined
materials to loadings of 6 wt.% Fe and 10 wt.% Ti without perturbing the ordered mesoporous structure.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
In mesoporous materials of the SBA family, phases with a three-
dimensional pore system are advantageous for catalytic applications,
compared to one-dimensional pore arrays, because of the thicker
walls, greater pore diameters and improved hydrothermal stability
with respect to reference materials such as MCM-41 [1–3]. Moreover,
metal substituted mesoporous architectures are attractive for
catalytic reactions involving molecules that are sterically excluded
from the channels of microporous zeolites [4–6]. Recently, several
metal ions including Ti4+, Cr6+, Mo5+, V5+ and Fe3+ have been suc-
cessfully incorporated into the frameworks of mesoporous silicas [7–
11]. In particular, Ti-substituted molecular sieves (Ti4+), such as TS-1,
Ti-beta and Ti-MCM-41 have displayed excellent catalytic properties
in selective oxidation reactionswhen using aqueous hydrogenperox-
ide as the oxidant [12–14]. Iron-containing mesoporous materials
(Fe3+), such as Fe-SBA-1, Fe-MCM-41, and Fe-HMS have also been
extensively studied because of their unique catalytic enhancement of
hydrocarbon oxidation, selective reduction, acylation and alkylation
reactions [2,3].

In an earlier report, the successful synthesis of SBA-1 mesoporous
silica via a sol-gel process using silatranewas described [15]. Here, this
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approach is extended to the preparation of highly ordered M-SBA-1
(M=Fe and Ti) cubic mesoporous silicas, and the structural and phys-
ical properties of these materials evaluated.

2. Methodology

2.1. Materials

Fumed silica (SiO2, 99.8%) (Sigma-Aldrich), titanium dioxide (TiO2)
(Carlo Erba), triethanolamine (TEA) (Carlo Erba), tetraethylenetria-
mine (TETA) (FACAI, Thailand), ethylene glycol (J.T. Baker, USA),
acetronitrile (Labscan, Asia), ferric chloride (FeCl3) (Sigma-Aldrich),
hexadodecyltrimethylammonium bromide (C16TMAB) (Sigma-
Aldrich), H2SO4 (Labscan, Asia) and NaOH (Labscan, Asia) were used
without treatment.

2.2. Preparation of mesoporous M-SBA-1

In this synthesis, solution A was prepared by adding C16TMAB
(0.44 g) to water (30 ml) and stirring for 0.5 h to obtain a clear
solution. Solution B was prepared by dissolving silatrane precursor
(5 mmol, 1.4 g), synthesized following the procedure described in
references [16], in 14 ml of 0.3 M H2SO4 and NaOH (1.7 mmol, 0.068 g)
by stirring for 0.5 h. The required amount of metal precursor, titanium
glycolate synthesized according to Ref. [17], or FeCl3, was added to
solution B and stirring continued for 0.5 h. Solution B was then added
to the solution A under vigorous stirring that continued for 4 h. Water
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Fig. 1. Diffuse reflectance UV–visible spectra of calcined Fe-SBA-1 (A) and Ti-SBA-1 (B) mesoporous materials as a function of incorporated metal loading in the framework.

Fig. 2. ESR spectra of calcined Fe-SBA-1 materials of different iron content.
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(30 ml) was added to this mixture before aging for 2 days at room
temperature to form a white precipitate. The product was filtered,
washed with distilled water, and dried at room temperature over-
Fig. 3. XRD patterns of calcined Fe-SBA-1 (A) and Ti
night. The template was removed by calcination (560 °C/6 h) in a
Carbolite Furnace (CFS 1200) at a heating rate of 0.5 °C/min.

2.3. Characterization

The mesoporous products were characterized using a Rigaku X-ray
diffractometer (XRD) with patterns accumulated at a scan speed of 1°/s
using CuKα radiation over the range of 2θ=1.5–8°. M-SBA-1 mesopore
order was directly examined using a JEOL 2010F transmission electron
microscope (TEM). Specific surface area and average pore size were
determined by the Brunauer–Emmett–Teller (BET) method with a
Quantasorb JR instrument. Diffuse reflectance UV–visible spectroscopic
measurements were recorded on a Shimadzu UV-2550 spectrometer
fittedwith an ISR-2200 integrating sphere attachment from200–600 nm
referenced to BaSO4. Electron spin resonance (ESR) spectra were
measured at the X-band, ∼9 GHz, on a JEOL JES-RE2X spectrometer.

3. Results and discussion

Higher metal (Ti4+, Fe3+) incorporation in SBA-1 has been attributed to a surfactant
silica assembly mechanism, in which the mesophase forms under acidic conditions via
an S+X−I+ pathway (S, X and I correspond to surfactant, halide and inorganic species,
respectively). As silatrane is a water soluble alkoxide, hydrolysis to silicate generates
-SBA-1 (B) containing different metal loadings.



Table 1
Physical and crystallographic characteristics of M-SBA-1 (M=Fe3+, Ti4+) mesoporous materials as a function of metal loading

Material Physical properties Crystallographic properties

Designation Metal Doping (wt.%) BET surface area (m2/g) Pore volume (cm3/g) Average pore diameter (nm) d210 (nm) a0 (nm)

SBA-1 0 1435 0.75 2.12 3.62 8.09
Fe 2% 2 1164 0.61 2.11 3.65 8.16
Fe 4% 4 1175 0.61 2.11 3.68 8.23
Fe 6% 6 1062 0.54 2.10 3.71 8.30
Ti 2% 2 1101 0.57 2.07 3.77 8.43
Ti 4% 4 1029 0.56 2.17 3.80 8.51
Ti 6% 6 880 0.51 2.34 3.83 8.58

aLattice parameters a0 were calculated based on the formula a0=√5d210.
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TEA molecules that act as a co-template in mesoporous formation, and in addition,
reduce the net positive charge on silica [15] to enhance the interaction with metal ions
and promote higher metal incorporation in SBA -1.

Diffuse reflectance UV–visible spectroscopy was used to characterize the nature and
coordination of Fe3+ [3] and Ti4+ ions [12] in the SBA-1mesoporousmolecular sieves. Fig.1
(A and B) shows UV–visible spectra of the calcined Fe-SBA-1 and Ti-SBA-1 as a function of
metal loading. For Fe-SBA-1, all samples showed a strong UV band at ∼230 nm associated
with a shoulder at 290 nm consistent with Laporte-allowed ligand-to-metal charge
transfer involving isolated Fe3+O4 co-ordination [3]. The intensity of these bands increases
monotonically with Fe content, as expected if there is crystallographic incorporation of Fe
in SBA-1. A characteristic band above 320 nm typical of octahedral co-ordination (Fe3+O6)
was absent indicating thesematerials are free of ferric oxide species similar to those found in
iron hydroxide, iron oxyhydroxide and iron oxide [18–20]. The Ti-SBA-1 samples show an
absorption band centered at 220 nm characteristic of the charge-transfer transition
associated with regular Ti4+O4 framework tetrahedra. Octahedral co-ordination (Ti4+O6) is
unlikely as the distinctive feature at 330 nm is missing [11,12].

TheX-band ESR spectra of the calcinedFe-SBA-1 (Fig. 2) shows twomajor components
at g=4.3, assigned to high-spin Fe3+ in a distorted tetrahedral environment, and g=2.0,
attributed to high-spin Fe3+ in a symmetrical tetrahedral/octahedral coordination [3].With
increasing iron content, the corresponding ESR signals increase in intensity. The
observation of the g=2.0 signal alone cannot be taken as unambiguous evidence for iron
framework substitution unless combined with other physical or chemical methods,
because of possible contributions from extra-framework Fe3+ [20–22].

Small angle XRD confirmed that after calcination, orderedmesoporeswere obtained
regardless of the metal (Fe/Ti) loading (Fig. 3). SBA-1 displays three well resolved
diffraction peaks in the region of 2θ=1.5–3° which can be indexed as (200), (210) and
(211) reflections with respect to a cubic lattice [11,18], that persists to an iron loading of
6wt.% (Fig. 3A). A similar trendwas observed to the Ti-loaded samples (Fig. 3B) although
the reflections are somewhat broader. Dilation of the d210 spacing of Ti-SBA-1 with
increasing titanium loading confirms the substitution of titanium (Ti4+=0.42 Å) for
silicon (Si4+=0.26 Å) in the framework [12–14].

Since the radiusof the ionic Fe3+ is larger than thatof Si4+ (r 3+Fe=0.49Åand r4+Si=0.26Å),
dilation of a0 (Table 1) is consistent with Fe3+ incorporation in the SBA-1 framework [3].
However, the decrease in intensity of the (200) and (211) reflections, with an increasing iron
content, suggests a reduction in the degree of ferrosilicate polymerization and structural
order [18]. Generally, it is expected that the unit cell parameter will be enlarged after the
incorporation of metal cations with ionic radii larger than Si4+.
Fig. 4. Typical bright field TEM images of calcinedM-SBA-1 at Fe 4% (A) and Ti 4% (B)metal loa
columns, with the micrographs labeled according to a cubic cell, and orientated in [−101]. Ord
extended for several nanometres. In the upper part of (B) a [111] crystal fragment extends und
order of each part.
Transmission electron microscope lattice images (Fig. 4A and B) of representative
Ti-SBA-1 and Fe-SBA-1 crystals demonstrates that regular mesopore arrays had formed,
and exclude the presence of metal segregation, as this would be readily detected due to
the greater electron scattering powder of Fe/Ti compared to Si.

The N2 adsorption/desorption isotherms of calcined Fe- and Ti-SBA-1 were all type
IV (not shown) and showed steep increases in the volume of adsorbed nitrogen at
relative pressures of P/P0=0.1–0.3 due to the onset of capillary condensation within
uniform mesopores [15]. Both Fe- and Ti-SBA-1 possessed a narrow pore size dis-
tribution with an average pore diameter of ∼2 nm confirming the TEM observations.
The incorporation of higher metal contents decreases the specific surface area from
1435 to 880 m2/g.

4. Conclusions

Silatrane obtained from the Oxide One Pot Synthesis (OOPS) pro-
cess is a highly reactive precursor for the preparation of transition
metal-bearing SBA-1mesoporous materials. It has been demonstrated
that the SBA-1 framework can accommodate up to 6 wt.% Fe and
10 wt.% Ti without perturbing mesopore order. Dilation of the me-
soporous lattice with metal loading is consistent with crystallochem-
ical framework replacement of Si4+ by Fe3+/Ti4+ and the predominant
retention of the metals in tetrahedral co-ordination to oxygen. How-
ever, to maintain charge balance as Fe3+ replaces Si4+ some edge-
sharing octahedral FeO6 clusters may be present as suggested by ESR
spectroscopy.
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