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Theoretical equations for the small-angle scattering of double-strand helixes with fanlike and round
cross sections, as well as a cylinder, were applied to determine the geometry of the self-assembled helical
structure formed by N-octadecanoyl-L-aspartic acid (C18Asp). However, those already-known equations
were not sufficient to reproduce the experimental small-angle neutron scattering (SANS) curves. Then,
a theoretical equation to the small-angle scattering for a helical fiber was derived. The equation with 5-fold
integration covers the available equations for fibers with finite cross sections, but it is generalized so as
to suit the multistrand helical structures with arbitrary cross-sectional shapes. Computer simulations
based on this theory showed that the best fit to the observed SANS data of C18Asp fiber is obtained for
a model of a single-strand helix with rectangular cross section, that is, the twisted ribbon.

I. Introduction

One of the commercialized applications of amphiphiles
is the utilization as gelators in organic and aqueous
mediums. In many cases, fibrous assemblies are formed
in gels, forming networks. The morphologies of fibers,
which were determined by optical microscopy, transmis-
sion electron microscopy (TEM), and atomic force mi-
croscopy, are spiral, superhelix, cylinder, hollow tube,
double tube, ribbon, platelet, cigar, and ring.1-16 However,

the thickness, length, flexibility, and cross-sectional
structure are different from fibers to fibers.

The quantitative analyses of local fiber structures, such
as cross-sectional shape and size, were carried out by
means of small-angle X-ray scattering (SAXS) and small-
angle neutron scattering (SANS). Terech and collabora-
tors,17 using a cylinder model under the consideration of
a size distribution, analyzed the scattering data of
organogels of steroid surfactants. They found that the
thickness of long and rigid rods is slightly sensitive to the
solvent species. They18 carried out the analysis of orga-
nogels of 12-hydroxyoctadecanoic acid and its Li salt and
found that the aggregates in xylene, hexadecane, decalin,
benzene, and fluorobenzene can be described as relatively
monodisperse infinitely long rigid rods with a square cross
section. However, the cross-sectional structure parameters
obtained from SANS for fibers in other solvents correspond
to an elongated rectangular or even lamellar-like (rib-
bonlike) shape.

Imae et al.13 analyzed SANS data of supramolecular
fibrils formed in liquid crystals of the ternary system, azo
dye/water/methanol. Since the cross-sectional radius
obtained from a long rod particle model corresponds to
the molecular length, a possible model of fibrils is an
arrangement like rodlike micelles. An alternative model
is a linear assembly of paired dyes in the antiparallel
way. Small-angle scattering data of hydrogels of fluori-
nated-hydrogenated glucophospholipid (F-Glu) were ana-
lyzed on the basis of a theoretical equation derived for
very long hollow tubules. The wall of tubules appears to
consist of three bilayers of F-Glu.12
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Imae et al.7 also reported the formation of fibrous
assemblies in 1% hydrogels of N-acyl-L-aspartic acid (Cn-
ASP, n ) 12, 14, 16, 18) at around neutral pH and at low
temperature, although the absolute pH and temperature
regions depend on the alkyl chain length. The infinitely
long fibrous images were visualized by TEM. The fibers
have uniform diameters of 120 Å in minimum and 200 Å
in maximum. Minimum and maximum are repeated with
a cycle of 650 Å along a contour length, and the fibers
seem to take a helical conformation. The cross-sectional
radii of 22-30 Å for a rod particle model were obtained
from the analysis of SANS data for CnAsp fibers. To
interpret the data, three plausible models were intro-
duced: (a) a double strand of helical bilayer strands, (b)
a superhelical structure of a helical bilayer strand, and
(c) a twisted ribbon of a planar bilayer sheet. However,
all these models were presented without any theoretical
support.

In the present work, we report the structural analysis
of fibrous assemblies of C18Asp. To determine the most
likely structure, theoretical SANS curves were evaluated
for different models and compared with the observed data.
First, defined structures, such as cylinder and single and
double helixes, for which the theoretical equations are
available, are applied. Then, as an extension of the given
above model (c), which was originally proposed for CnAsp
fibers,7 the theoretical small-angle scattering equation
with arbitrary shape of the cross section is derived. A
numerical calculation program in C++ language is
introduced to resolve the 5-fold integral operation, which
is universal for multistrand helical fibers. From the
comparison of the calculated SANS curve with the
observed one, it is deduced that model (c) is the most
plausible one for CnAsp fibers.

II. Available Analytical Equations for
Small-Angle Scattering of Infinitely Long Fibers

with Defined Cross Sections

(1) Cylinder with Round Cross Section. It is
apparent from TEM photographs that assemblies of Cn-
Asp in gels take the structure of a fiber with uniform
thickness.7 Then, the simplest model of CnAsp fibers is a
cylinder. For an infinitely long cylinder with round cross
section of radius R, the small-angle scattering intensity
I(Q) at a momentum transfer Q is written by19,20

where J1(RQ) is a Bessel function. The curve calculated
by using eq 2-1 is given in Figure 1a and compared with
the observed data for C18Asp.7 The better fit curve was
obtained for R ) 60 Å, but it is obvious that the observed
curve is not reproduced by the cylinder model. The reason
for that is the omission of the possible helical conformation
of the CnAsp fibers.

(2) Double-Strand Helix with Fanlike Cross Sec-
tion. Pringle and Schmidt21 derived the equation for the
small-angle scattering intensity of helical macromolecules
made up of two identical coaxial helixes. The theoretical
calculations based on their theory were applied to SAXS
of DNA21 and SANS of steroidal gels.20 On a model of
fanlike cross section, as seen in Figure 2a, available

equations for an infinitely long helix are as below

where

The parameters æ, ω, R, and a are defined in Figure 2a.
P is the helical pitch. If æ ) π, the center angle of the fan
is given by eq 2-5.

Figure 1b shows the curve which was calculated with the
optimum parameters: R ) 100 Å, r ) 30 Å, ω ) 35°, and
P ) 1300 ()650 × 2) Å when a ) 0 and æ ) π. It can be
clearly seen that the calculated curve, in the Q region
above 0.03 Å-1, does not fit to the observed data.

(3) Single- and Double-Strand Helixes with Round
Cross Section. An alternative theoretical equation for
the small-angle scattering intensity of a double-strand
helix was reported by Puigjaner and Subirana.22 The
double-strand helix with round cross section is situated
as shown in Figure 2b, where the fiber axis is equivalent
to a z axis. In this figure, r1 and r2 are the cross-sectional
radii of the two cylinders, δ1 and δ2 are the distances from
the fiber axis to the centers of the cross sections, and R
is the angle between the two cylinders. Then the scattering
intensity is described by eq 2-6

where

P is the helical pitch and Q⊥ is the component of Q in the
x-y plane. It is noted that these equations, for R ) 0,
correspond to the small-angle scattering intensity of a
single-strand helix.

The curve for a double-strand helix with the optimum
parameters r1 ) r2 ) r ) 30 Å, δ1 ) δ2 ) δ ) 70 Å, R )
π, and P ) 1300 Å is drawn in Figure 1c, and the curve
for a single-strand helix with the optimum parameters r1
) r2 ) r ) 30 Å, δ1 ) δ2 ) δ ) 70 Å, R ) 0, and P ) 1300
Å is drawn in Figure 1d. Nonagreement with the observed
data is observed, especially, in the lower Q region. This(19) Vainshtein, B. K. In Diffraction of X-rays by chain molecules;
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QI(Q) ) ∑
n)0

∞

εn cos2(næ/2)
sin2(nω/2)

(nω/2)2
[gn(QR,a)]2 (2-2)

gn(QR,a) ) 2R-2(1 - a2)-1∫aR

R
r′Jn(Qr′(1 - qn

2)1/2) dr′
(2-3)

qn ) nb/QR at QR g nb

qn ) 1 at QR e nb

b ) 2πR/P

ε0 ) 1 and εn ) 2 at n g 1 (2-4)

ω ) 2 sin-1 r
R

(2-5)

QI(Q) ) ∑
n

(a1n
2 + a2n

2 + 2a1na2n cos nR) (2-6)

ain ) J1(δiQ⊥)πri
2 2J1(riQ⊥)

riQ⊥

Q⊥
2 ) Q2 - [2πn

P ]2
(2-7)

QI(Q) ) (2J1(RQ)
RQ )2

(2-1)
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indicates that even helix models with round cross sections
are not enough to interpret the structure of CnAsp fibers.

III. Numerical Computation for Small-Angle
Scattering of Infinitely Long Helical Fibers with

Arbitrary Cross Sections
The single- and double-strand helixes with round cross

sections as mentioned above are just the models b and a,
respectively, which are two of the three plausible models

introduced to explain the structure of CnAsp fibers. Since
both helical models were found to be inadequate, the other
model (c) has been examined. However, since theoretical
equations for model (c) are not available, the corresponding
equation must be first derived. We introduce here the
universal equation for the small-angle scattering of a
multistrand helix with arbitrary cross sections.

For deriving a general equation of the scattering
intensity from helical fibers, the geometry of the cross

Figure 1. Comparison of model calculations using eqs 2-1, 2-2, and 2-6 and the observed SANS curve: solid line, calculated curves
for (a) cylinder (R ) 60 Å), (b) double-strand helix with fanlike cross section (R ) 100 Å, r ) 30 Å, ω ) 35°, a ) 0, æ ) π, P ) 1300
Å), (c) double-strand helix with round cross section (r1 ) r2 ) r ) 30 Å, δ1 ) δ2 ) δ ) 70 Å, R ) π, P ) 1300 Å), (d) single-strand
helix with round cross section (r1 ) r2 ) r ) 30 Å, δ1 ) δ2 ) δ ) 70 Å, R ) 0, P ) 1300 Å); broken line, observed curve for C18Asp
fiber in a 1 wt % aqueous solution.7 Cross-section models are shown.

Numerical Simulation for SANS of Helical Fiber Langmuir, Vol. 18, No. 19, 2002 7109



section in the x-y plane is defined as shown in Figure 3.
The coordinate (x0,y0) of an origin of the cross section of
a fiber is located at distance δ from the main axis z of the
helical fiber. Since the cross section with an arbitrary
shape rotates at a pitch P around the helix axis, a matrix
R(θ), as it is given in eq 3-1, is used for the transfer of the
rotational angle θ in the x-y coordinate

where

The scattering intensity I1(Q) of a fiber is described by
a Fourier transform of the scattering length density F(r)
in real space. Then

where a momentum transfer vectorQ and a position vector
r, respectively, are written by

When the position vector of an origin of the cross section
is r0

the scattering length density for a fiber of length L is

divided into two terms and described by

where F⊥(x,y) is the scattering length density from the
origin (x0,y0) on the x-y plane and

When substituting eq 3-8 into eq 3-4 and replacing the
integral variable r⊥ to R(-θ)r⊥ - r0⊥ , we obtain

The scattering intensity Ien(Q) for an ensemble of
randomly dispersed fibers in a system is obtained by space-
averaging the scattering intensity of a fiber I1(Q), ac-
cording to the geometry illustrated in Figure 4, where

The resulting scattering intensity is

We rewrite the scattering intensity (3-14) to a more
convenient form for numerical calculation making the
range of the z integral independent of the length L of the
fiber. Since R(θ) is a periodic function of a period 2π, if we
describe the length of a fiber by

where m is an odd integer, we obtain the following
expression for the scattering intensity

where

Hence, for infinitely long fibers we obtain

Figure 2. Geometry of the cross section of a double-strand
helical fiber in the x-y plane of Cartesian coordinates: (a)
fanlike cross section; (b) round cross section.

Figure 3. Geometry of the cross section of a fiber in the x-y
plane of Cartesian coordinates.

R(θ) ) (cos θ -sin θ
sin θ cos θ ) (3-1)

θ ) 2πz/P (3-2)

I1(Q) ) |A(Q)|2 (3-3)

A(Q) ) ∫ dr F(r)eiQr (3-4)

Q ) (Qx,Qy,Qz) ) (Q⊥,Qz) (3-5)

r ) (x,y,z) ) (r⊥,z) (3-6)

r0 ) (x0,y0,z0) ) (r0⊥,z0) (3-7)

Figure 4. Notation of Q in Cartesian coordinates.

F(r) ) F⊥(R(-θ)r⊥ - r0⊥)Π(z,L) (3-8)

Π(z,L) ) 1 for |Z| e L/2

) 0 for otherwise (3-10)

A(Q) ) ∫ dr⊥F⊥(r⊥)eiR(θ)Q⊥‚(r⊥+r0⊥) ∫ dzΠ(z,L)eiQzz

(3-11)

Q⊥ ) (Q sin Θ cos Φ
Q sin Θ sin Φ ) (3-12)

Qz ) Q cos Θ (3-13)

Ien(Q) ) 1
4π ∫0

2π
dΦ ∫0

π
sin Θ dΘ|I1(Q)|2

) 1
4π ∫0

2π
dΦ ∫0

π
sin Θ dΘ| ∫ ×

F⊥(r⊥)eiR(θ)Q⊥‚(r⊥+r0⊥) dr⊥ ∫-L/2

L/2
eiQzz dz|2 (3-14)

L ) mP (3-15)

I(Q;m) ) 1
4πmP ∫0

2π
dΦ ∫0

π
sin Θ dΘ|cm(PQz) ∫ ×

F⊥(x,y)eiR(θ)Q⊥‚(r⊥+r0⊥) dx dy∫-P/2

P/2
eiQzz dz|2 (3-16)

cm(PQz) ) 1 + 2 cos PQz + ‚‚‚ + 2 cos m + 1
2

PQz

(3-17)

Iinf(Q) ) lim
mf∞

I(Q;m) (3-18)
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For the scattering intensity of multistrand helical fibers,
F⊥(x,y) is described as a sum of the cross-section compo-
nents of the fiber. The shape of the cross section is alterable
by the integrand of x and y, that is, F⊥(x,y).

The 5-fold integrals of Φ, Θ, x, y, and z in the finite
range given by eq 3-16 can be calculated according to the
Gauss-Legendre method.23 For a numerical calculation,
it is convenient to define F⊥(x,y) of the helix by the
inheritance of the class in C++ language. We defined the
following “section_list” class in C++ language and then
any F⊥(x,y) from the origin (x0,y0) by the inherited classes
of it.

class section_list
{
protected:

static double Q; //momentum transfer
double QRx() const; // x component of R(θ)Q⊥ in eq

3-16
double QRy() const; // y component of R(θ)Q⊥ in eq

3-16
cmplx expxy(double x, double y) const; // eiQ⊥r⊥ in eq

3-16
public:

double x0,y0; // origin of the cross section from the
axis of the helix (x0,y0)

void add(); // add the cross section to the helix
virtual inline cmplx figure() const )0; // define cross

section
};
Small-angle scattering curves for double-strand helixes

calculated using the theoretical equation derived above

were compared with those from available equations (2-2)
and (2-6). Model calculations with m ) 7 and the same
geometrical parameters of fibers were perfectly consistent
with those from latter ones, which is shown in Figure 1,
for helixes with fanlike and round cross sections. This
indicates that the derived equation is exactly equivalent
to the available equations already reported, if we use
sufficiently large m. In fact, for m ) 7, the length of helical
object L ) 7 × 1300 Å is sufficiently large compared with
the cross-sectional radius of object, several tenths Å.

IV. Helical Fiber Self-Assembled by Amino Acid
Surfactant

As discussed above, it is doubtful that the single and
double strands of helical bilayer strands (models (b) and
(a)), modeled as single- and double-strand helixes with
round cross sections, respectively, are adequate models
for CnAsp fibers. Then, the equation (3-16) derived was
applied to the model (c) of a twisted ribbon. A twisted
ribbon of a planar bilayer sheet (model (c)) can be regarded
as a single-strand helix with rectangular cross section. A
computer simulation was then carried out on the basis of
this model, and the corresponding small-angle scattering
curves, calculated with the optimum parameters, were
compared with the observed SANS curve of C18Asp fibers,7
as shown in Figure 5a. The fitting to the observed curve
is the best for the calculation based on a single-strand
helix with rectangular cross section with the following

(23) Abramowitz, M.; Stegun, I. A. Handbook of mathematical
functions; Dover Publications: New York, 1970.

Figure 5. Comparison of model calculations using a 5-fold integral equation for a twisted ribbon and the observed SANS curve:
solid line, calculated curves for (a) single-strand helix with rectangular cross section (W ) 180 Å, H ) 50 Å, P ) 1300 Å), (b)
single-strand helix with edge-covered rectangular cross section (W ) 130 Å, H ) 50 Å, P ) 1300 Å); broken line, observed curve
for C18Asp fiber in a 1 wt % aqueous solution.7 Cross-section models are shown.
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parameters: long width W ) 180 Å, short width H ) 50
Å, and helical pitch P ) 1300 Å. Since the good fitting
spans now to regions of up to Q ) 0.2 Å-1, it is concluded
that the helical ribbon is the best model of CnAsp fibers.

The effect of the variation of the parameters was
examined, and this can be seen in Figures 6-8. As the
short width of rectangular cross section is shortened from
50 to 40 Å, the I(Q) vs Q curve becomes more gradual and
a peak at around Q ) 0.02 Å-1 shifts to larger Q values
(see Figure 6). This tendency is consistent with that
observed in SANS curves for C18Asp to C14Asp fibers.7 If
the rectangular cross section is formed by bilayers, the
short width must be the double of the molecular length.
Since the calculated molecular lengths of CnAsp (n ) 14,
16, 18) are 22.5, 25.0, and 27.5 Å, respectively,7 the double
of their lengths is consistent with the variation of the
short width, if the alkyl chains are slightly tilted or melted.
Figure 7 shows the effect of the long width in rectangular
cross section. Even if the width is changed from 160 to

200 Å, the calculated intensity curves are scarcely affected.
This suggests that the size distribution of long widths is
insensitive to the scattering curves. Similar conclusions
were obtained for the helical pitch. As it is seen in Figure
8, the changes of the helical pitch in the range 1100-1300
Å, which is within the observed error, give a meaningless
influence to the scattering curves.

Upon the basis of the numerical simulation, it is then
considered that the twisted ribbon model, that is, the
single-strand helix with rectangular cross section, is the
best fitted model for the CnAsp fibers, in which the cross
section of the ribbon consists of a bilayer of the component
molecules. However, this twisted ribbon is not reasonable
from the viewpoint of a self-assembly structure, because
the alkyl chains in the edge of the bilayer are exposed to

Figure 6. Comparison of model calculations using a 5-fold
integral equation for a twisted ribbon and the observed SANS
curve: solid line, calculated curves as a variation of short width
of rectangular cross section; broken line, observed curve for
C18Asp fiber in a 1 wt % aqueous solution.7 Used parameters
are given in the figure. Figure 7. Comparison of model calculations using a 5-fold

integral equation for a twisted ribbon and the observed SANS
curve: solid line, calculated curves as a variation of long width
of rectangular cross section; broken line, observed curve for
C18Asp fiber in a 1 wt % aqueous solution.7 Used parameters
are given in the figure.
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bulk water. Therefore, another model was proposed, as
shown in Figure 5b. In this case two semicircular
assemblies of component molecules are attached on both
edges to the ribbon in order to inhibit the direct contact
of the alkyl chains with the bulk water. According to this
model with edge-covered rectangular cross section, the
fitting curve was drawn and it is shown in Figure 5b.
Since the fitting curve deviates slightly in the region of
small Q, this model does not seem to be the most plausible
one considering the self-assembly of the fibers. It was
reported that bilayer ribbon’s edges are different from
the entire ribbon surface in the character and the twisted
bilayer ribbons close to yield tubles.24 This supports the
rectangular cross section without covered edges as de-
termined above.

After all, an optimum model for the C18Asp fibers is as
shown in Figure 9. In the comparison with the observation

by TEM, the helical pitch of a twisted ribbon is double
that of the observed cycle of minimum and maximum along
a contour length of a fiber. The long width of the planar
bilayer sheet in the cross-sectional area of a ribbon is
consistent with the maximum diameter of C18Asp fibers.
However, the short width, which is double the molecular
length, is not in agreement with the observed minimum
diameter. This fact results from the resolution of TEM.
That is, in the accumulation of twisted monolayers with
about 5 Å thickness and 50 Å short width, the minimum
width is difficult to resolve by TEM.

V. Conclusions

The available theoretical equations so far for small-
angle scattering of fibers were separately introduced for
different kinds of structures. One inconvenience for
utilizing them is the separate programming, when the
different structures are compared. Other demerit is that
its use is limited to structures where the theoretical
equations are available. Theoretical analyses for double-
strand helix models were carried out using the available
equations.However, suchtrialdidnot succeed to reproduce
the SANS curves of CnAsp fibers. As the single-strand
helix is another possibility for modeling CnAsp fibers, the
corresponding theoretical equations were derived in this
work.

Since the strict equation for the calculation consists of
a 5-fold integral equation, the calculation is troublesome.
However, if one programs at once the universal equation,
this program can be used for the calculation of the small-
angle scattering of fibers with any kind of cross-sectional
shape. The equation can be used even for a multistrand(24) Goren, M.; Qi, Z.; Lennox, B. Chem. Mater. 2000, 12, 1220.

Figure 8. Comparison of model calculations using a 5-fold
integral equation for a twisted ribbon and the observed SANS
curve: solid line, calculated curves as a variation of helical
pitch; broken line, observed curve for C18Asp fiber in a 1 wt %
aqueous solution.7 Used parameters are given in the figure.

Figure 9. An optimum model for a C18Asp fiber.
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helix and also for a helix with inhomogeneous scattering
length. From the application of this equation to CnAsp
fibers, it was concluded that the fibers must be twisted
ribbons. The cross section of ribbons consists of a bilayer
of the component molecules, the width being three to four
times larger than the bilayer thickness.
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