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Abstract
A fluorescence sensor film for metal ion detection was prepared from a 2,2,6,6-tetramethyl-1-piperidinyloxy radical-
oxidized cellulose nanofiber (TOCNF), which was chemically immobilized the metal ion selective ligand, namely, 3,5-bis
(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid. The ligand in the TOCNF/ligand films exhibited
fluorescence at a 310 nm excitation wavelength and at an ~410 nm emission wavelength. Then, the sensing efficiency
and limits were evaluated from the fluorescence of the metal ion-bound ligand. The Stern–Volmer plot of the fluorescence
emission intensity of the films increased with increasing of Cu2+ or Cs+ concentration. Accordingly, the sensing of metal
ions was more effective on TOCNF with a greater amount of ligand, the sensing of Cu2+ was superior to that of Cs+, and
the detection range of the TOCNF/ligand film was wider for Cu2+ than for Cs+. Thus, although the sensitivity of this
sensor is lower than the electrochemical detection previously reported, the noticeable potential of the current sensing
system is that it is a film type to be easily removable from the sensing water and there is no remaining sensing residue in
the water.

Introduction

The steady increase in world’s population and industrial
activities has led to an increase in global water pollution,
and this issue is a growing worldwide challenge that
needs to be alleviated. One of the major causes of water
pollution arises from the various types of industrial waste,
especially heavy metals, and radioactive nuclide waste
produced from nuclear power plants [1, 2]. The dischar-
ging of heavy metal ions into the environment is currently

a global problem. Cu2+ is one of crucial environmental
pollutants from industrial circles, but it is also a vital
element in the human body and plays a key role in phy-
siological processes in living organisms [3–5]. Although
Cu2+ is a primary micronutrient for all living tissues,
especially, plants and animals [6], excess Cu2+ has
negative effects on animal and human health such as
gastrointestinal, kidney, liver, and many neurological
disorders [4, 5, 7].

The heavy radioactive nuclide cesium-137 (137Cs+)
was the most harmful substance emitted during the
Fukushima nuclear accident due to its long half-life of
30.2 years, high water solubility, high fission yield of
6.09%, and strong γ radiation compared with other
radioactive nuclides [8–10]. 137Cs+ is one of the major
fission products of uranium released from a nuclear
reactor [11, 12], and a total 3.3 × 1016 Bq of 137Cs+ was
released into terrestrial and aquatic environments [13].
Because it can also accumulate in the human body, it
causes severe environmental, ecological, and human
health issues, including cardiovascular disease and gas-
trointestinal distress [14–16]. Thus, there is a challenging
task of establishing effective systems for the simple, rapid
and eco-friendly detection of 137Cs+ and Cu2+ from
widespread contamination in aquatic ecosystems.
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Several analytical techniques including atomic absorp-
tion spectroscopy [17–19], ion-selective electrodes [20, 21],
inductively coupled plasma-mass spectrometry [22], ion
chromatography [23], fluorescence spectroscopy [6, 24, 25],
and electrochemical methods [6, 26] have been previously
applied for the determination of Cu and Cs ions. Although
the determination limit and sensitivity of the reported
methods are high, most of these methods involve compli-
cated experimental settings and time-consuming measure-
ments [25]. Thus, considering that the demand for sensor
technology has been growing rapidly, an eco-friendly,
simple, lightweight fluorescence-based sensor could be an
option to detect analytes such as heavy metal ions in
aqueous media.

Cellulose has been considered as a promising biomaterial
due to its mechanically flexible property and environmental
suitability [27–29]. However, because its structural mod-
ification is restricted owing to the limited available func-
tional groups on cellulose [27], chemical treatment is
required. Compared with many chemical treatments,
2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO)
treatment has been shown to be effective in producing
cellulose nanofibers of nanometer thickness without redu-
cing the length [28]. TEMPO-oxidized cellulose nanofibers
(TOCNFs) are uniform and ultrafine fibers that have many
carboxyl groups on their chains, which are easy to chemi-
cally modify [27, 28, 30, 31]. In this respect, TOCNF has
attracted particular concern due to its abundance, biode-
gradability, nontoxicity, and extensive use in many appli-
cations [27–32].

It has been reported that Schiff base ligands with π elec-
trons in the C=N group and nitrogen of the aromatic ring can
provide good chelation with metal ions to form strong metal
complexes in aqueous solutions [4, 6]. This chelation could
increase the intramolecular and ligand-to-metal charge trans-
fer, and thus can be utilized for the detection of metal ions
[33, 34]. In previous work, the tretradentate Schiff base
ligand, 3,5-bis(((2-hydroxynaphthalen-1-yl)methylene)amino)
benzoic acid (3,5-BHNMABA) was successfully synthesized
to selectively detect Cu2+ on indium tin oxide glass electrodes
by the electrochemical methods [6].

The purpose of the present work is to develop a film-type
sensing system for specific metal ions. The sensor film was
fabricated from ligand (3,5-BHNMABA)-bound TOCNF
through a chemical reaction. The nitrogen and oxygen on
3,5-BHNMABA play significant roles in the metal–ligand
complex, and the complexation was detected by a fluores-
cence method. Finally, the detection limit of this method
was assessed. The selectivity and sensitivity of Schiff base
ligands toward Cu2+ and Cs+, environmentally friendly
sensing materials, and conventional detection techniques
are merits of this study. To date, no study has been reported
on the detection of a Schiff base ligand (3,5-BHNMABA)-

functionalized TOCNF sensor film. Thus, this film-type
sensor should be developed.

Experimental section

Materials

The dried pulp was obtained from Canary Corporation
(Taiwan). TEMPO, sodium borohydride (NaBH4), ethyle-
nediamine (EDA), 3,5-diaminobenzoic acid (99+%),
2-hydroxynaphthalene-1-carbaldehyde (99+%), 1-ethyl-3-
(3-dimethylaminopropyl)-carbodiimide (EDC), and N-
hydroxysuccinimide (NHS) were purchased from ACROS
Organics (USA). CsCl, Cu(CH3COO)2·H2O, and Pb
(CH3COO)2·3H2O were purchased from Sigma-Aldrich
(USA). Other chemicals used were of commercial analy-
tical grade. Ultrapure water (resistivity of 18.2MΩ cm) was
obtained from a Yamato Millipore WT100 (Japan) system.

Instruments

Fourier-transform infrared (FTIR) absorption spectra were
obtained using the KBr pellet method on an FTIR spec-
trophotometer (Nicolet 6700, Thermo Scientific, USA). The
ultraviolet (UV)–visible absorption spectra were recorded at
a scanning speed of 200 nm/min using a 2 mm quartz
cell with a UV–visible spectrophotometer (V-670, Jasco,
Japan). The fluorescence spectra in the solutions were
measured in a 10 mm-path quartz cell, and those of the films
placed on a solid holder were obtained at an incident angle
of 45° at a scan speed of 2400 nm/min with a fluorescence
spectrophotometer (F-7000, Hitachi, Japan). Field scanning
electron microscopy (FESEM) was performed on a JEOL
JSM-6500F, Japan.

Synthesis of the TEMPO-oxidized cellulose nanofiber
(TOCNF)

TOCNF was synthesized from the dried pulp as reported
earlier [27–29]. Briefly, to dried pulp (1 g) dispersed in
water (100 ml) containing NaBr (0.1 g/g cellulose) and
TEMPO (0.016 g/g cellulose), NaOCl (5 mmol, 13 vol %)
was added, and the pH was maintained at 10 for the
oxidation reaction. After the oxidized pulp was filtered
and washed with water, the byproduct (hydroxide group)
was reduced by the addition of reducing agent (NaBH4,
1 g). The TEMPO-oxidized cellulose pulp containing
sodium carboxylate groups (TOCF-COONa) was washed
with water by centrifugation (6000 rpm, 5 min), dispersed
in water to obtain 0.33 wt% dry weight and placed in an
ultrasonicator for 40 min to produce TOCNF. Ultra-
sonication was carried out in an ice-cooled bath with an
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ultrasonic processor (Q700, Misonix, USA) equipped
with a half-inch tip.

To measure the carboxylate content, a dispersion of
TOCNF (160 mg) in water (50 ml) was adjusted to pH 2.5
by using aqueous 1M HCl solution. After stirring for
10 min, the suspension was titrated using aqueous 0.1 M
NaOH solution under continuous stirring. The titration was
terminated at pH 12. The conductivity was monitored by
using a conductivity meter throughout the titration process
according to a previous study [35]. The carboxylate content
in TOCNF was calculated according to the following
equation [36]:

Carboxylate content %ð Þ ¼ V � N � Uw

W
� 100%; ð1Þ

where N [mol/l] is the concentration of NaOH, V [l] is the
volume of NaOH added at each data point during the
conductivity titration, Uw [g/unit mol] is the unit weight of
TOCNF, and W [g] is the dried weight of TOCNF.

Synthesis of 3,5-bis-(((2-hydroxynaphthalen-1-yl)
methylene)amino)benzoic acid (3,5-BHNMABA) and
the TOCNF/3,5-BHNMABA ligand sensor film

The 3,5-BHNMABA ligand was synthesized through con-
densation and recrystallization reactions according to a
previous report [6]. A methanol solution (20 ml) of 3,5-
diaminobenzoic acid (2 mmol, 0.304 g) was added dropwise
to a methanol solution (20 ml) of 2-hydroxynaphthalene-1-
carbaldehyde (4 mmol, 0.723 g) at 40–50 °C with con-
tinuous stirring for 2 h. The mixture was left overnight at
room temperature. The crude solid (brown precipitate) was
collected by filtration, recrystallized from aqueous ethanol,
and dried at room temperature (~25 °C).

To the 3,5-BHNMABA ligand dispersed in water, an
equimolar concentration of coupling reagents, EDC and
NHS, were added to activate the carboxyl functional group.
After 1 h, an aqueous dispersion of the 3,5-BHNMABA
ligand was adjusted to pH 10, and the bridging reagent,
EDA, was added at a molar ratio of 1:1:1 (EDA:EDC:
NHS). The mixture was stirred for 1 day at room tem-
perature to complete the amidation reaction.

The nanocompound, TOCNF/3,5-BHNMABA ligand,
was synthesized by a coupling reaction [28–30, 37]. Equi-
molar coupling reagents were added to the TOCNF dis-
persion (0.33 wt%) in water. The dispersion was adjusted to
pH 10, mixed with the ligand solution and left for 1 day at
room temperature to complete the amidation reaction. The
nanocompound dispersions were dried on a Teflon plate at
room temperature to mold the film. The obtained sensor
films were labeled TOCNF/3,5-BHNMABA(1–3) based on
the different concentrations (250, 500, and 750 μM,
respectively) of the 3,5-BHNMABA ligand, and cut into a

1 × 1 cm2 size for the detection of metal ions. Solutions
(20 µl) of metal ions with different concentrations ranging
from 5 to 600 ppm were prepared by dissolving their
respective metal salts in water, dropped onto the sensor
film, and dried. The binding response was monitored with a
fluorescence spectrophotometer with a solid holder. In this
procedure, the fluorescence is quenched by metal ions
captured on the ligand in the film.

Results and discussion

Characterization of 3,5-BHNMABA-functionalized
TOCNF

In the present study, the pulp was used as a raw material,
and a TEMPO-mediated oxidation reaction was performed
on the pulp, since it can selectively oxidize the primary
alcohol groups on the pulp fiber into carboxylate groups
[29, 37, 38]. The carboxylate content of TOCNF was
measured by the conductivity titration method [35] using
NaOH as seen in Supporting information Fig. S1. In the
titration plot, the conductivity linearly decreased in the
strong acid region (pH 2–4) by the consumption of protons
(H+), and it linearly increased at pH values > 7 after the
addition of NaOH due to the increase in free OH− groups in
the dispersion. In the weakly acid region of pH 4–6, the
conductivity remained constant because of the consumption
of protons by the carboxylate groups of TOCNF. Thus, the
carboxylate content in TOCNF was calculated by Eq. (1)
mentioned above [36]. The carboxylate content in TOCNF
reached 1.25 mmol/g, which was 22.25% of the whole
cellulose unit. These values were consistent with previous
reports of carboxyl content >1 mmol/g or >17.8% [38]. As
seen in Fig. S2, the high transmittance (85%) in the
UV–visible absorption spectrum of the aqueous TOCNF
dispersion was consistent with the previous result of the
cellulose nanofiber formation by the ultrasonication of
TEMPO-oxidized cellulose pulp [29].

The tetradentate ligand (3,5-BHNMABA) was chemi-
cally immobilized on TOCNF by the ethylenediamine-
mediated amidation reaction. The products named TOCNF/
3,5-BHNMABA(1–3), depending on the amount of ligand,
were molded to form films. Figure 1 displays the photo-
graphs of the films. The TOCNF film is transparent without
color, but the TOCNF/ligand films have color that becomes
darker with increasing the ligand content because of the
absorption band of the ligand, as described later. Figure 2
presents the FESEM images of TOCNF and the TOCNF/
3,5-BHNMABA(1–3) films. The surface morphology of
TOCNF was smooth and homogenous, and a similar
smooth and homogeneous film surface was also observed
for the TOCNF/3,5-BHNMABA(1–3) films, suggesting that
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immobilization of a small amount (~5%) of ligands did not
significantly affect the film morphology.

Figure 3 shows the FTIR spectra of the TOCNF film and
TOCNF/ligand films and was compared with the FTIR
spectrum of the ligand. In the IR spectrum of TOCNF,
characteristic bands at 3413, 2896, 1608, and 896 cm−1 can
be assigned to O–H, C–H, antisymmetric COO−, and

glycosidic C1–O–C4 stretching vibration modes, respec-
tively. The bands at 1420–1330 and 1200–1030 cm−1 are
overlapped by symmetric COO−, C–OH, pyranose C–O–C
stretching vibration modes, and other modes [32, 39–41].
As seen in Fig. 3, all FTIR spectra of TOCNF/3,5-
BHNMABA(1–3) films were similar to the spectra of
TOCNF despite the characteristic IR bands of 3,5-
BHNMABA at 3400, 2923, 1702, 1630, 1400, 1318, and

Fig. 2 FESEM images of the
a TOCNF, b TOCNF/3,5-
BHNMABA(1), c TOCNF/3,5-
BHNMABA(2), and d TOCNF/
3,5-BHNMABA(3) films

Fig. 3 FTIR spectra of TOCNF, the TOCNF/3,5-BHNMABA ligand
1–3 films, and 3,5-BHNMABA powder

Fig. 1 Photographs of the a TOCNF, b TOCNF/3,5-BHNMABA(1),
c TOCNF/3,5-BHNMABA(2), and d TOCNF/3,5-BHNMABA
(3) films
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1317 cm−1 assigned to O–H, C–H, C=O, C=N, aromatic
ring, C–N, and C–C/C–O stretching vibration modes,
respectively [6]. The reason for this result is the lower
contribution of ligand in the FTIR spectra since the ligand
exists in only a small portion (~5%) of the nanocompound
films.

Optical properties of TOCNF/3,5-BHNMABA(1–3)

The optical properties were examined for of TOCNF and
TOCNF/3,5-BHNMABA(1–3) both in solutions and on
films. Figure 4 shows the UV–visible absorption spectra of
the solutions and the films of TOCNF and TOCNF/3,5-
BHNMABA(1–3). Five absorption bands appeared at 220,
250, 310, 417, and 442 nm in the TOCNF/3,5-BHNMABA
(1–3) solutions, and they intensified with increasing ligand
content, although pristine TOCNF did not exhibit any
UV–visible absorption bands (Fig. 4A). These results are

attributed to the aromatic π–π∗ transition, C=N bond π–π∗
transition, and n–π∗ transitions of 3,5-BHNMABA [42].
The same five UV–visible absorption bands of 3,5-
BHNMABA were detected even in the TOCNF/3,5-
BHNMABA(1–3) films and their absorbances increased
with increasing ligand content as well (Fig. 4B).

The fluorescence emission bands of TOCNF/3,5-
BHNMABA(1) and TOCNF/3,5-BHNMABA(2) solutions
were at 407 nm, while that of the TOCNF/3,5-BHNMABA
(3) solution was at 402 nm, when the solutions were excited
at 310 nm (Figs. 5A and S3A). The TOCNF/3,5-
BHNMABA films excited at 310 nm also displayed fluor-
escence emission bands, but these emission bands were at
400 nm for the TOCNF/3,5-BHNMABA(1 and 2) films and
at 396 nm for the TOCNF/3,5-BHNMABA(3) film (Figs. 5B
and S3B).

Sensing of Cu2+ and Cs+ on the TOCNF/3,5-
BHNMABA(1–3) film sensors

In this study, different concentrations of Cu2+ and Cs+

ranging from 5 to 600 ppm were monitored by fluorescence

Fig. 4 UV–visible absorption spectra of a TOCNF, b TOCNF/3,5-
BHNMABA(1), c TOCNF/3,5-BHNMABA(2), and d TOCNF/3,5-
BHNMABA(3) (A) in solution and (B) on films

Fig. 5 a UV–vis absorption, b fluorescence excitation, and c fluores-
cence emission spectra of TOCNF/3,5-BHNMABA(2) (A) in solution
and (B) on films
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intensity on the TOCNF/3,5-BHNMABA(1–3) film sen-
sors. Figures 6a and S4A show the fluorescence spectra of
TOCNF/ligand films with the addition of Cu2+ at different
concentrations. The emission intensity of the TOCNF/3,5-
BHNMABA(1–3) films decreased as the Cu2+ concentra-
tions increased from 5 to 600 ppm. A similar trend was
observed for the emission spectra of Cs+ on the TOCNF/
3,5-BHNMABA(1–3) films, as seen in Figs. 6b and S4B.
The addition of 5–600 ppm Cs+ on the TOCNF/ligand films
led to a decrease in the emission intensity.

The quenching of emission intensity was plotted as a
function of Cu2+ or Cs+ concentration based on the
Stern–Volmer equation as follows:

Fo=F ¼ Ksv M
xþ½ � þ 1; ð2Þ

where Fo and F are the emission intensities at metal ion
concentrations of 0 and [Mx+], respectively, and Ksv is a

Stern–Volmer constant. As presented in Fig. 7, the quenching
efficiency mostly increased with increasing the concentration
of ions for all TOCNF/ligand films. Then the Stern–Volmer
constant in ppm−1 was 0.0052 (R2= 0.996), 0.0060 (R2=
0.993), and 0.0022 (R2= 0.999) for the addition of Cu2+ and
0.0017 (R2= 0.997), 0.0027 (R2= 0.998), and 0.0037 (R2=
0.995) for the addition of Cs+ onto the TOCNF/3,5-
BHNMABA(1–3) films, respectively. When the fluorescence
was quenched, the Stern–Volmer constant increased. Thus,
the Stern–Volmer constant is the barometer for sensing metal
ions. The sensing of metal ions is more effective on TOCNF
with a larger amount of ligand, and the sensing of Cu2+ was
superior to that of Cs+. By way of exception, the sensing of
the TOCNF/3,5-BHNMABA(3) film for Cu2+ was lower than
that of the TOCNF/3,5-BHNMABA(1 and 2) films. A
possible reason for this result is that Cu2+ could easily bind
to two ligands at the same time on films with a larger amount
of ligands, because divalent ions have this ability. Separately,
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Fig. 6 Fluorescence emission spectra of the TOCNF/3,5-
BHNMABA(2) film upon addition of different concentrations of a
Cu2+ and b Cs+

Fig. 7 Stern–Volmer plots of A Cu2+ and B Cs+ on the TOCNF/ligand
sensor films: a 3,5-BHNMABA(1), b 3,5-BHNMABA(2), and c 3,5-
BHNMABA(3)
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the highest limit of detection can be evaluated as the
concentration deviating from linearity on the Stern–Volmer
equation, and the lowest detection limit is the lowest
concentration that shows the significant fluorescence quench-
ing. Thus, the detection range was 5–600 ppm for the sensing
of Cu2+ on the TOCNF/3,5-BHNMABA(1 and 2) films,
5–400 ppm for the sensing of Cu2+ on the TOCNF/3,5-
BHNMABA(3) film, and 5–500 ppm for the sensing of Cs+

on the TOCNF/3,5-BHNMABA(1–3) films. Thus, the
detection range of the TOCNF/ligand film was superior for
Cu2+ compared with Cs+.

A previous report [6] confirmed the selective detection of
Cu2+ by a free tetradentate (3,5-BHNMABA) ligand in
acetone/water, where other divalent ions (Ni2+, Zn2+, Hg2+,
Co2+, Pb2+, and Cd2+) were not selected. Figure 8 indicates
that the addition of 500 ppm Pb2+ is inappreciable on the
present film-type sensor. Thus, the TOCNF/ligand sensor is
selective for Cu2+ even its film state and useful for Cs+

sensing.
Scheme 1 illustrates the coordination complex of metal

ions (Cu2+ or Cs+) with the tetradentate ligand (3,5-
BHNMABA) on the TOCNF chain in the film state. The non-
bonding lone pair electrons exist in the center of the tetra-
dentate ligand to capture the metal ions, which raises the
quenching effect of the ligand in the fluorescence spectra.
Namely, the Schiff base ligand (3,5-BHNMABA) forms a
complex with metal ions and thus the intramolecular charge
transfer increases [6, 33, 34]. This indicates a strong coordi-
nation complex between the tetradentate ligand (3,5-
BHNMABA) and Cs+ or Cu2+. More detailed insight into the
selectivity or complexation of Cu2+ and Cs+ on ligand sen-
sors is an issue to be addressed in the near future.

In addition, the current TOCNF/ligand sensor for the Cu2+

and Cs+ detection was compared with previously reported

sensors with different detection techniques and sensing
materials, as presented in Table 1. Compared with previous
studies, the current sensor showed some great potential,
including simple preparation, inexpensive and eco-friendly
materials and techniques, good selectivity for Cu2+ and Cs+,
broad linear range of detection (10–600 ppm), on-site detec-
tion, and short detection time. The inadequacy is that the
sensitivity of the fluorescence film sensor in the current study
is lower than those previously reported using the same ligand
or other ligands and electrochemical detection, calorimetric,
or fluorescent methods [6, 8, 25, 43–48]. However, electro-
chemical detection methods require the effort to prepare the
electrode sensors and spectroscopic detection methods must
undergo a removal process of sensor ligand after binding of
the metal ions. By contrast, as the most noticeable potential,
the current ligand film sensor is a sheet-like figure and is
usable by cutting into an adequate size, and after the detection
process, it can just be removed from the wastewater.

Conclusions

A simple and robust film-based sensor was successfully
developed from Schiff base ligand (3,5-BHNMABA)-
functionalized TOCNF for the selective and specific Cu2+

and Cs+ detection. The TOCNF-based film sensor exhibits
outstanding mechanical properties, flexibility, high trans-
mittance, and easy functionalization. Although the detection
of heavy metal ions by the TOCNF/3,5-BHNMABA film
sensor is less sensitive compared with other methods, the
current sensor provides some benefits, such as the film type,
and can be recovered and reused. Moreover, the current
fluorescence sensor possesses great potential for portable
and convenient on-site detection of heavy metal ions. In

Scheme 1 Schematic illustration of the TOCNF/3,5-BHNMABA
ligand sensor with Cu2+ or Cs+Fig. 8 Fluorescence emission of the TOCNF/3,5-BHNMABA(2)

sensor film upon the addition of a Cu2+, b Cs+, c Pb2+ at 500 ppm,
and d no metal ion. λexcitation= 310 nm

Film sensor of a ligand-functionalized cellulose nanofiber for the selective detection of copper and. . . 1241



particular, the present procedure can contribute to the
treatment of radioactive waste.
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